Background: Alcohol use is associated with an automatic tendency to approach alcohol, and the retraining of this tendency (cognitive bias modification [CBM]) shows therapeutic promise in clinical settings. To improve access to training and to enhance participant engagement, a mobile version of alcohol avoidance training was developed.Objective: The aims of this pilot study were to assess (1) adherence to a mobile health (mHealth) app; (2) changes in weekly alcohol use from before to after training; and (3) user experience with regard to the mHealth app.Methods: A self-selected nonclinical sample of 1082 participants, who were experiencing problems associated with alcohol, signed up to use the alcohol avoidance training app Breindebaas for 3 weeks with at least two training sessions per week. In each training session, 100 pictures (50 of alcoholic beverages and 50 of nonalcoholic beverages) were presented consecutively in a random order at the center of a touchscreen. Alcoholic beverages were swiped upward (away from the body), whereas nonalcoholic beverages were swiped downward (toward the body). During approach responses, the picture size increased to mimic an approach movement, and conversely, during avoidance responses, the picture size decreased to mimic avoidance. At baseline, we assessed sociodemographic characteristics, alcohol consumption, alcohol-related problems, use of other substances, self-efficacy, and craving. After 3 weeks, 37.89% (410/1082) of the participants (posttest responders) completed an online questionnaire evaluating adherence, alcohol consumption, and user satisfaction. Three months later, 19.03% (206/1082) of the participants (follow-up responders) filled in a follow-up questionnaire examining adherence and alcohol consumption.Results: The 410 posttest responders were older, were more commonly female, and had a higher education as compared with posttest dropouts. Among those who completed the study, 79.0% (324/410) were considered adherent as they completed four or more sessions, whereas 58.0% (238/410) performed the advised six or more training sessions. The study identified a significant reduction in alcohol consumption of 7.8 units per week after 3 weeks (95% CI 6.2-9.4, P<.001; n=410) and another reduction of 6.2 units at 3 months for follow-up responders (95% CI 3.7-8.7, P<.001; n=206). Posttest responders provided positive feedback regarding the fast-working, simple, and user-friendly design of the app. Almost half of the posttest responders reported gaining more control over their alcohol use. The repetitious and nonpersonalized nature of the intervention was suggested as a point for improvement.Conclusions: This is one of the first studies to employ alcohol avoidance training in a mobile app for problem drinkers. Preliminary findings suggest that a mobile CBM app fulfils a need for problem drinkers and may contribute to a reduction in alcohol use. Replicating these findings in a controlled study is warranted.
This document consists of the research report of Work Package 3 of ProMiMiC's locations Groningen and The Hague. Through the implementation of MiMiC-projects in the form of ‘living labs’, research data was generated leading to insights into (1) concepts of interprofessionality between musicians and healthcare professionals, (2) effects of the MiMiC-practice on nurses’ compassionate skills in contact with patients and (3) the influence of the various contexts on the MiMiC-practice. Given the fact that hospitals are the site of study in ProMiMiC, the research activities of Work Package 3 got highly affected by the COVID-19 pandemic. It led to additional questions and expansion of the MiMiC practice to directions that the consortium hadnot foreseen.
Although stressors are frequently linked to several negative health outcomes, experiencing stressors may be necessary for enhancing performance. At present, the literature is lacking a unified, comprehensive framework that accounts for both positive and negative outcomes following stressors. Therefore, we introduce the framework of hormesis, which has been applied in biological research for decades. According to hormesis, small-to-medium doses of a stressor can stimulate an organism's response, while large doses cause detrimental effects. In this article, we argue that these dose-response dynamics can be found in various domains of performance psychology (i.e., eustress and distress, psychological momentum, emotions, motivation, confidence, cognitive performance, training, skill acquisition, adversity, and trauma). Furthermore, hormesis also accounts for the inter- and intra-individual variability commonly found in responses to stressors. Finally, from an applied perspective, leveraging hormesis may stimulate new psychological interventions that mimic the well-known effects of (toxic) vaccinations at the level of behavior.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Het vakgebied Biomimicry gebruikt principes uit de natuur als inspiratiebron voor het ontwerpen van productinnovaties. In de marketingpraktijk worden principes uit de natuur nog niet gebruikt. Het lectoraat New Marketing van het Expertisecentrum Sustainable Business van Avans is in 2021 gestart met een oriënterend onderzoek naar de toepassingsmogelijkheden van biomimicry binnen marketing. Uit dit onderzoek komt naar voren dat principes uit de natuur bedrijven en merken kunnen helpen om hun marketingaanpak te verduurzamen. Met name op het onderwerp ‘groei’ biedt biomimicry kansrijke aanknopingspunten en inzichten. Groei is een belangrijk thema voor bedrijven en marketeers waar ze tegelijkertijd mee worstelen: hoe kunnen zij op een groene manier groeien? Het reclamebureau Heldergroen volgt het lopende onderzoek van Avans met grote belangstelling. Ze wil principes uit de natuur graag gaan gebruiken om (potentiële) klanten te helpen om hun marketingaanpak te verduurzamen. Daarom gaat het lectoraat New Marketing in samenwerking met Heldergroen en haar klanten onderzoek doen om “een bruikbare methodiek te ontwikkelen om inzichten uit de natuurlijke wereld te benutten voor het versnellen van de transitie naar een groene economie via het vakgebied marketing.” Het lectoraat New Marketing gaat in het kader van dit verdiepend onderzoek op basis van deskresearch, interviews en actieonderzoek aan de slag om hiervoor een methodologie te ontwerpen.