We outline the architecture of a CBIR-interface that allows the user to interactively classify images by dragging and dropping them into different piles and instructing the interface to come up with features that can mimic this classffication. Logistic regression and Sammon projection are used to support this search mode.
Caribbean coral reefs are in decline and the deployment of artificial reefs, structures on the sea bottom that mimic one or more characteristics of a natural reef, is increasingly often considered to sustain ecosystem services. Independent of their specific purposes, it is essential that artificial reefs do not negatively affect the already stressed surrounding habitat. To evaluate the ecological effects of artificial reefs in the Caribbean, an analysis was performed on 212 artificial reefs that were deployed in the Greater Caribbean between 1960 and 2018, based on cases documented in grey (n = 158) and scientific (n = 54) literature. Depending on the availability of data, reef type and purpose were linked to ecological effects and fisheries management practices around the artificial reefs. The three most common purposes to deploy artificial reefs were to create new dive sites (41%), toperform research (22%) and to support ecosystem restoration (18%), mainly by stimulating diversity. Ship wrecks (44%), reef balls© (13%) and piles of concrete construction blocks (11%) were the most-often deployed artificial reef structures and metal and concrete were the most-used materials. The ecological development onartificial reefs in the Caribbean appeared to be severely understudied. Research and monitoring has mostly been done on small experimental reefs that had been specifically designed for science, whereas the most commonly deployed artificial reef types have hardly been evaluated. Studies that systematically compare the ecological functioning of different artificial reef types are virtually non-existent in the Caribbean and should be a research priority, including the efficacy of new designs and materials. Comparisons with natural reef ecosystems are scarce. Artificial reefs can harbor high fish densities and species richness, but both fish and benthos assemblages often remain distinct from natural ecosystems. Studies from other parts of the world show that artificial reefs can influence the surrounding ecosystem by introducing non-indigenous species and by leaking iron. As artificial reefs attract part of their marine organisms from surrounding habitats, intensive exploitation by fishers, without clear management, can adversely affect the fish stocks in the surrounding area and thus counteract any potential ecosystem benefits. This study shows that over 80% of artificial reefs in the Caribbean remain accessible tofishers and are a risk to the surrounding habitat. To ensure artificial reefs and their fisheries do not negatively affect the surrounding ecosystem, it is imperative to include artificial reefs, their fisheries and the surrounding ecosystem in monitoring programs and management plans and to create no-take zones around artificial reefs that are not monitored.
MULTIFILE
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Het vakgebied Biomimicry gebruikt principes uit de natuur als inspiratiebron voor het ontwerpen van productinnovaties. In de marketingpraktijk worden principes uit de natuur nog niet gebruikt. Het lectoraat New Marketing van het Expertisecentrum Sustainable Business van Avans is in 2021 gestart met een oriënterend onderzoek naar de toepassingsmogelijkheden van biomimicry binnen marketing. Uit dit onderzoek komt naar voren dat principes uit de natuur bedrijven en merken kunnen helpen om hun marketingaanpak te verduurzamen. Met name op het onderwerp ‘groei’ biedt biomimicry kansrijke aanknopingspunten en inzichten. Groei is een belangrijk thema voor bedrijven en marketeers waar ze tegelijkertijd mee worstelen: hoe kunnen zij op een groene manier groeien? Het reclamebureau Heldergroen volgt het lopende onderzoek van Avans met grote belangstelling. Ze wil principes uit de natuur graag gaan gebruiken om (potentiële) klanten te helpen om hun marketingaanpak te verduurzamen. Daarom gaat het lectoraat New Marketing in samenwerking met Heldergroen en haar klanten onderzoek doen om “een bruikbare methodiek te ontwikkelen om inzichten uit de natuurlijke wereld te benutten voor het versnellen van de transitie naar een groene economie via het vakgebied marketing.” Het lectoraat New Marketing gaat in het kader van dit verdiepend onderzoek op basis van deskresearch, interviews en actieonderzoek aan de slag om hiervoor een methodologie te ontwerpen.