Innovations are required in urban infrastructures due to the pressing needs for mitigating climate change and prevent resource depletion. In order to address the slow pace of innovation in urban systems, this paper analyses factors involved in attempts to introduce novel sanitary systems. Today new requirements are important: sanitary systems should have an optimal energy/climate performance, with recovery of resources, and with fewer emissions. Anaerobic digestion has been suggested as an alternative to current aerobic waste water treatment processes. This paper presents an overview of attempts to introduce novel anaerobic sanitation systems for domestic sanitation. The paper identifies main factors that contributed to a premature termination of such attempts. Especially smaller scale anaerobic sanitation systems will probably not be able to compete economically with traditional sewage treatment. However, anaerobic treatment has various advantages for mitigating climate change, removing persistent chemicals, and for the transition to a circular economy. The paper concludes that loss avoidance, both in the sewage system and in the waste water treatment plants, should play a key role in determining experiments that could lead to a transition in sanitation. http://dx.doi.org/10.13044/j.sdewes.d6.0214 LinkedIn: https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
A Nursing Process-Clinical Decision Support System (NP-CDSS) Standard with 25 criteria to guide future developments of Nursing Process-Clinical Decision Support Systems was developed. The NP-CDSS Standards' content validity was established in qualitative interviews yielding fourteen categories that demonstrate international expert consensus. All experts judged the Advanced Nursing Process being the centerpiece for Nursing Process-Clinical Decision Support System that should suggest research-based, pre-defined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions and patient outcomes.
LINK
The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fundamental skill for its navigation and decision-making processes. This work focuses on the feasibility of using machine learning in a Raspberry Pi 4 Model B, solving the localization problem using images and fiducial markers (ArUco markers) in the context of the RobotAtFactory 4.0 competition. The approaches were validated using a realistically simulated scenario. Three algorithms were tested, and all were shown to be a good solution for a limited amount of data. Results also show that when the amount of data grows, only Multi-Layer Perception (MLP) is feasible for the embedded application due to the required training time and the resulting size of the model.
Hoewel drones worden gebruikt in steeds toenemende civiele toepassingen voor een goede daad, zijn kwaadwillende drones ook steeds meer en steeds vaker worden ingezet om schade aan te richten. Huis, tuin en keukendrones zijn in staat om door te dringen tot zwaarbeveiligde gebieden en daar verwoestende schade aan te brengen. Ze zijn goedkoop, precies en kunnen steeds grotere afstanden afleggen. Kwaadwillende drones vormen een groot gevaar voor de nationale veiligheid. In dit KIEM-project onderzoeken wij de vraag in hoeverre is het mogelijk om drones te ontwikkelen die volledig autonoom een ongecontroleerde omgeving (luchtruim) veilig kunnen houden? Counter drones moeten kamikaze-drones kunnen signaleren en uitschakelen. Bestaande systemen zijn nog onvoldoende in staat om kwaadwillende drones op tijd uit te schakelen. Bij Defensie, de Nationale Politie en het gevangeniswezen is dringend behoefte aan systemen die kwaadwillende drones kunnen detecteren en uitschakelen. Er zijn thans enkele (Europese) systemen waarmee drones kunnen worden gedetecteerd, onder andere met radiofrequentiesignalen (voelen), optische- en radartechnologie (zien) en akoestische systemen (horen). Geen van deze systemen vormen de ‘silver bullet’ voor het bestrijden van kwaadwillende drones, vooral kleine en laagvliegende drones. Met een feasibility study wordt nagegaan wat de state-of-the-art is van de huidige counter dronetechnologieën en op welke technologiedomeinen het consortium waarde kan toevoegen aan de ontwikkeling van effectieve counter drones. Saxion en haar partners zet zich de komende jaren in op Sleuteltechnologieën als: Human Robotic Interaction, Perception, Navigation, Systems Development, Mechatronics en Cognition. Technologieën die terugkomen in counter drones, maar ook worden doorontwikkeld voor andere toepassingsgebieden. Het project bestaat uit 4 fasen: een onderzoek naar de huidige counter dronetechnologieën (IST), onderzoek naar gewenste/toekomstige counter dronetechnologieën (SOLL), een gap-analyse (TOR) én een omgevingsanalyse om na te gaan wat er elders in Europa al aan onderzoek plaatsvindt. Tevens wordt een netwerk ontwikkeld om counter droneontwikkeling mogelijk te maken.
The proposed living lab researches how autonomous ships can be integrated in the supply chain. This is done in the real-life environment of the port of Rotterdam and connecting waterways. Research lines are 1) Logistical integration: development of processes and infrastructure, 2) Frameworks for public and private law relating to transport of cargo by autonomous ships. 3) Identification and development of promising operational scenarios and business cases, 4) smart precision navigation in ports and 5) safe supervision of autonomous ships in busy waters. To support these research lines, at least 1 commericlly operating ship will be equipped with sensors and control systems and a command station is developed.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.