Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top-down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension.
DOCUMENT
There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally.
LINK
Different inputs from a multisensory object or event are often integrated into a coherent and unitary percept, despite differences in sensory formats, neural pathways, and processing times of the involved modalities. Presumably, multisensory integration occurs if the cross-modal inputs are presented within a certain window of temporal integration where inputs are perceived as being simultaneous. Here, we examine the role of ongoing neuronal alpha (i.e. 10-Hz) oscillations in multimodal synchrony perception. While EEG was measured, participants performed a simultaneity judgement task with visual stimuli preceding auditory ones. At stimulus onset asynchronies (SOA's) of 160–200 ms, simultaneity judgements were around 50%. For trials with these SOA's, occipital alpha power was smaller preceding correct judgements, and the individual alpha frequency was correlated with the size of the temporal window of integration. In addition, simultaneity judgements were modulated as a function of oscillatory phase at 12.5 Hz, but the latter effect was only marginally significant. These results support the notion that oscillatory neuronal activity in the alpha frequency range, which has been taken to shape perceptual cycles, is instrumental in multisensory perception.
LINK
The event-related potential (ERP) approach has provided a wealth of fine-grained information about the time course and the neural basis of cognitive processing events. However, in the 1980s and 1990s, an increasing number of researchers began to realize that an ERP only represents a certain part of the event-related electroencephalographic (EEG) signal. This chapter focuses on another aspect of event-related EEG activity: oscillatory EEG activity. There exists a meaningful relationship between oscillatory neuronal dynamics, on the one hand, and a wide range of cognitive processes, on the other hand. Given that the analysis of oscillatory dynamics extracts information from the EEG/magnetoencephalographic (EEG/MEG) signal that is largely lost with the traditional time-locked averaging of single trials used in the ERP approach, studying the dynamic oscillatory patterns in the EEG/MEG is at least a useful addition to the traditional ERP approach.
DOCUMENT
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
De maat is vol: jonge mensen spijbelen voor het klimaat. Maar de ecologische crisis is een crisis in ons denken, en daarmee ook een crisis in ons onderwijs. Het aangaan van de grote ecologische en economische uitdagingen is niet geholpen met ‘oud denken’. Ze vragen om mensen die minder atomistisch en meer ecologisch kunnen denken over hoe zaken elkaar beïnvloeden en met elkaar verbonden zijn. Leren kritisch te denken is niet genoeg. Ontwerpgericht leren denken en samen nieuwe kennis construeren, is cruciaal. Velen zien leren als een neurologisch of cognitief informatieverwerkingsproces. Leren is vooral een psychologisch proces waarbij kennis in-ter-actie ontstaat. In de rede wordt deze stelling conceptueel besproken en onderbouwd met semantische, sociale netwerkanalyses van student-interacties. De rede eindigt met handreikingen voor studenten en docenten voor responsief en kennisconstruerend leren.
DOCUMENT
Chronic sorrow involves parents’ enduring grief due to their child’s disability. This stems not only from the recurring painful reality parents face, which differs from the life they had hoped for their children, families, and themselves but from also being confronted with societal and personal norms and expectations they cannot meet. There is a lack of research on the lived experiences of parents’ chronic sorrow. An Interpretative Phenomenological Analysis (IPA) study involving six parents with severely disabled children explored what it is like for parents to confront being ‘‘different.’’ Besides sorrow, the parents experienced intense ambiguity,guilt, and uncertainty while navigating societal expectations and their own perceptions of their children. Their ideas of parenthood and their self-identity as parents proved central to their strategies. This study provides insight into the intricacies of this particular aspect of chronic sorrow in parents, with relevance for research and practice.
DOCUMENT