The assessment of the out-of-plane response of unreinforced masonry (URM) buildings with cavity walls has been a popular topic in regions such as Central and Northern Europe, Australia, New Zealand, China and several other countries.Cavity walls are particularly vulnerable as the out-of-plane capacity of each individual leaf is significantly smaller than the one of a solid wall. In the Netherlands, cavity walls are characterized by an inner load-bearing leaf of calcium silicate bricks, and by an outer veneer of clay bricks that has only aesthetic and insulation functions. The two leaves are typically connected by means of metallic ties. This paper utilizes the results of an experimental campaign conducted by the authors to calibrate a hysteretic model that represents the axial cyclic response of cavity wall tie connections. The proposednumerical model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response such as the strength degradation, the unloading stiffness degradation and the pinching behaviour. The numerical modelling approach in this paper can be easily adopted by practitioner engineers who aim to model the wall ties more accurately when assessing the structures against earthquakes.
DOCUMENT
Energy dissipative steel cushions (EDSCs) are simple units that can be used to join structural members. They can absorb a substantial amount of seismic energy due to their geometric shapes and the ductile behavior of mild steel. Large deformation capability and stable hysteretic behavior were obtained in monotonic and cyclic tests of EDSCs in the framework of the SAFECLADDING project. Discrete numerical modeling strategies were applied to reproduce the experimental results. The first and second models comprise two-dimensional shell elements and one-dimensional flexural frame elements, respectively. The uncertain points in the preparation of the models included the mesh density, representation of the material properties, and interaction between contacting surfaces. A zero-length nonlinear link element was used in the third attempt in the numerical modeling. Parameters are recommended for the Ramberg–Osgood and bilinear models. The obtained results indicate that all of the numerical models can reproduce the response, and the stiffness, strength, and unloading and reloading curves were fitted accurately.
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is particularly critical in Groningen, a province located in the northern part of the Netherlands, where low-intensity ground shaking has occurred since 1991 due to gas extraction. The majority of buildings in this area are constructed using URM and were not designed to withstand earthquakes, as the area had never been affected by tectonic seismic activity before. Hence, the assessment of URM buildings in the Groningen province has become of high relevance.Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Therefore, studying the mechanical behaviour of such connections is of prime importance for understanding and preventing damages and collapses in URM structures. Specifically, buildings with double-leaf cavity walls constitute a large portion of the building stock in the Groningen area. The connections of the leaves in cavity walls, which consist of metallic ties, are expected to play an important role. Regarding the wall-to-floor connections, the traditional way for URM structures in Dutch construction practice is either a simple masonry pocket connection or a hook anchor as-built connection, which are expected to be vulnerable to out-of-plane excitation. However, until now, little research has been carried out to characterise the seismic behaviour of connections between structural elements in traditional Dutch construction practice.This thesis investigates the seismic behaviour of two types of connections: wall-to-wall connections between cavity wall leaves and wall-to-floor connections between the masonry cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen area. The research is divided into three phases: (1) inventory of existing buildings and connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and validation of numerical and mechanical models. The thesis explores the three phases as follows:(i) An inventory of connections within URM buildings in the Groningen area is established. The inventory includes URM buildings of Groningen based on construction material, lateral load-resisting system, floor system, number of storeys, and connection details. Specific focus is given to the wall-to-wall and wall-to-floor connections in each URM building. The thickness of cavity wall leaves, the air gap between the leaves and the size and spacing of timber joists are key aspects of the inventory.(ii) Experimental tests are performed on the most common connection typologies identified in the inventory. This phase consists of two distinct experimental campaigns:o The first experimental campaign took place at the laboratory of the Delft University of Technology to provide a comprehensive characterisation of the axial behaviour of traditional metal tie connections in cavity walls. The campaign included a wide range of variations, such as two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including both monotonic and cyclic loading. The experimental results showed that the capacity of the wall tie connection is strongly influenced by the embedment length and the tie geometry, whereas the applied pre-compression and the loading rate do not have a significant influence.o The second experimental campaign has been carried out at the laboratory of the Hanze University of Applied Sciences to characterise the seismic behaviour of timber joist-masonry cavity wall connections, reproducing both as-built and strengthened conditions. Twenty-two unreinforced masonry wallets were tested, with different configurations, including two tie distributions, two pre-compression levels, two different as-built connections, and two different strengthening solutions. The experimental results highlighted the importance of cohesion and friction between joist and masonry since the type of failure mechanism (sliding of the joist or rocking failure of the masonry wallet) depends on the value of these two parameters. Additionally, the interaction between the joist and the wallet and the uplift of the latter activated due to rocking led to an arching effect that increased friction at the interface between the joist and the masonry. Consequently, the arching effect enhanced the force capacity of the connection.(iii) Mechanical and numerical models are proposed and validated against the performed experiments or other benchmarks. Mechanical and numerical models for the cavity wall tie and mechanical models for the timber joist-masonry connections were developed and verified by the experimental results to predict the failure mode and the strength capacity of the examined connections in URM buildings.o The mechanical model for the cavity wall tie connections considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. After being calibrated against the available experiments, the proposed mechanical model is used to predict the performance of untested configurations by means of parametric analyses, including higher strength of mortar for calcium silicate brick masonry, different cavity depth, different tie embedment depth, and the use of solid bricks in place of perforated clay bricks.o The results of the experimental campaign on cavity wall ties were also utilised to calibrate a hysteretic numerical model representing the cyclic axial response of cavity wall tie connections. The proposed model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response, such as strength degradation, unloading stiffness degradation, and pinching behaviour. The mechanical and numerical modelling approach can be easily adopted by practitioner engineers seeking to model the wall ties more accurately when assessing URM structures against earthquakes.o The mechanical model of timber-masonry connections examines two different failure modes: joist-sliding failure mode, including joist-to-wall interaction and rocking failure mode due to joist movement. Both mechanical models have been validated against the outcomes of the experimental campaigns conducted on the corresponding connections. The mechanical model is able to estimate each contribution of the studied mechanism. Structural engineers can use the mechanical model to predict the capacity of the connection for the studied failure modes.This research study can contribute to a better understanding of typical Groningen houses in terms of identifying the most common connections used at wall-to-wall and wall-to-floor connections in cavity walls, characterising the identified connections and proposing mechanical models for the studied connections.
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT
This paper aims to quantify the cumulative damage of unreinforced masonry (URM) subjected to induced seismicity. A numerical model based on discrete element method (DEM) has been develop and was able to represented masonry wall panels with and without openings; which are common typologies of domestic houses in the Groningen gas field in the Netherlands. Within DEM, masonry units were represented as a series of discrete blocks bonded together with zero-thickness interfaces, representing mortar, which can open and close according to the stresses applied on them. Initially, the numerical model has been validated against the experimental data reported in the literature. It was assumed that the bricks would exhibit linear stress-strain behaviour and that opening and slip along the mortar joints would be the predominant failure mechanism. Then, accumulated damage within the seismic response of the masonry walls investigated by means of harmonic load excitations representative of the acceleration time histories recorded during induced seismicity events that occurred in Groningen, the Netherlands.
DOCUMENT
The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level. Then, the standard Halpin-Tsai equations are employed to establish the orthotropic elastic properties of the unidirectional carbon fiber composite at the lamina macromechanics level. Finally, the lamination theory is implemented in order to establish the macroscopic force-strain and moment-curvature relations at the laminate level. The elastic mechanical properties of specific composite configurations and their performance in different mechanical tests are evaluated using finite element analysis and are found to considerably increase with the nanomaterial volume fraction increase for values up to 0.5. Further, the hybrid composite structures with graphene inclusions demonstrate better mechanical performance as compared to the identical structures with CNT inclusions. Comparisons with theoretical or other numerical techniques, where it is possible, demonstrate the accuracy of the proposed technique.
DOCUMENT
The present study deals with the numerical modelling of hybridlaminated composites, which can be proved especially useful in theengineering and maintenance of advanced aerospace primary structures. Thelamina is comprised of continuous carbon fibers, thermosetting epoxypolymer matrix, as well as carbon nanostructures, such as graphene orcarbon nanotubes, inclusions. Halpin-Tsai equations combined with resultsobtained from nanomechanical analysis are employed in order to evaluatethe elastic properties of the carbon nanostructure/polymer matrix. Then, theobtained elastic properties of the hybrid matrix are used to calculate theorthotropic macro-mechanical properties of the unidirectional compositelamina. A hybrid composite plate is modelled as a 2D structure via theutilization of 4-node, quadrilateral, stress/displacement shell finite elementswith reduced integration formulation. The convergence and analysisaccuracy are tested. The mechanical performance of the hybrid compositesis investigated by considering specific configurations and applyingappropriate loading and boundary conditions. The results are compared withthe corresponding ones found in the open literature, where it is possible.
DOCUMENT
Laminated composites have important applications in modern aeronautical structures due to their extraordinary mechanical and environmental behaviour. Nevertheless, aircraft composite structures are highly vulnerable to impact damage, either by low-velocity sources during maintenance or high-velocity sources during in-flight events. Even barely visible impact damage induced by low-velocity loading, substantially reduces the residual mechanical performance and the safe-service life of the composites structures. Despite the extensive research already carried out, impact damage of laminated composite structures is still not well understood and it is an area of on-going research. Numerical modelling is considered as the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intra-laminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS ® programme. The employed modelling approach is validated using numerical results found in the literature and the presented results show an acceptable correlation to the available literature data. It is demonstrated that the presented model is able to capture force-time response as well as damage evolution map for a range of impact energies.
DOCUMENT