Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness.
DOCUMENT
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT
This paper presents an innovative approach that combines optimization and simulation techniques for solving scheduling problems under uncertainty. We introduce an Opt–Sim closed-loop feedback framework (Opt–Sim) based on a sliding-window method, where a simulation model is used for evaluating the optimized solution with inherent uncertainties for scheduling activities. The specific problem tackled in this paper, refers to the airport capacity management under uncertainty, and the Opt–Sim framework is applied to a real case study (Paris Charles de Gaulle Airport, France). Different implementations of the Opt–Sim framework were tested based on: parameters for driving the Opt–Sim algorithmic framework and parameters for riving the optimization search algorithm. Results show that, by applying the Opt–Sim framework, potential aircraft conflicts could be reduced up to 57% over the non-optimized scenario. The proposed optimization framework is general enough so that different optimization resolution methods and simulation paradigms can be implemented for solving scheduling problems in several other fields.
DOCUMENT
The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic.This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level.The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time. In this thesis, optimization and simulation techniques are combined together by developing two methods that aim at improving the solution robustness and feasibility. The first method acts as a validation tool for the optimized solution, and it improves the robustness of solution by iteratively fine-tuning some of the optimization model input parameters. The second method embeds the optimization in a simulation environment by taking full advantage of the sliding window approach and creating a loop for a continuous improvement of the optimized solution at each window of the sliding window approach. Both methods prove to be effective by improving the performance, lowering the total amount of conflicts up to 23.33% for the first method and up to 11.2% for the second method, however, in contrast to the deterministic method, the two methods they are not able to achieve a conflict-free scenario due to the effect of uncertainty.In general, the research conducted in this thesis highlights that uncertainty is a factor that affects to a large extent the feasibility of optimized solution when applied to real-world instances, and it, moreover, confirms that using simulation together with optimization has the potentiality toivdeal with uncertainty. The framework developed can be potentially applied to similar problems and different optimization solving methods can be adapted to it.Keywords: Optimization, Simulation, Integrated airport operations, Uncertainty
MULTIFILE
Primary anterior cruciate ligament (ACL) injury prevention programs effectively reduce ACL injury risk in the short term. Despite these programs, ACL injury incidence is still high, making it imperative to continue to improve cur- rent prevention strategies. A potential limitation of current ACL injury prevention training may be a deficit in the transfer of conscious, optimal movement strategies rehearsed during training sessions to automatic movements required for athletic activities and unanticipated events on the field. Instructional strategies with an internal focus of attention have traditionally been utilized, but may not be optimal for the acquisition of the control of complex motor skills required for sports. Conversely, external-focus instructional strategies may enhance skill acquisition more efficiently and increase the transfer of improved motor skills to sports activities. The current article will present in- sights gained from the motor-learning domain that may enhance neuromuscular training programs via improved skill development and increased reten- tion and transfer to sports activities, which may reduce ACL injury incidence in the long term.
DOCUMENT
Traditionally airport systems have been studied using an approach in which the different elements of the system are studied independently. Until recently scientific community has put attention in developing models and techniques that study the system using holistic approaches for understanding cause and effect relationships of the integral system. This chapter presents a case of an airport in which the authors have implemented an approach for improving the turnaround time of the operation. The novelty of the approach is that it uses a combination of simulation, parameter analysis and optimization for getting to the best amount of vehicles that minimize the turnaround time of the airport under study. In addition, the simulation model is such that it includes the most important elements within the aviation system, such as terminal manoeuvring area, runway, taxi networks, and ground handling operation. The results show clearly that the approach is suitable for a complex system in which the amount of variables makes it intractable for getting good solutions in reasonable time.
LINK
Background: Advanced statistical modeling techniques may help predict health outcomes. However, it is not the case that these modeling techniques always outperform traditional techniques such as regression techniques. In this study, external validation was carried out for five modeling strategies for the prediction of the disability of community-dwelling older people in the Netherlands. Methods: We analyzed data from five studies consisting of community-dwelling older people in the Netherlands. For the prediction of the total disability score as measured with the Groningen Activity Restriction Scale (GARS), we used fourteen predictors as measured with the Tilburg Frailty Indicator (TFI). Both the TFI and the GARS are self-report questionnaires. For the modeling, five statistical modeling techniques were evaluated: general linear model (GLM), support vector machine (SVM), neural net (NN), recursive partitioning (RP), and random forest (RF). Each model was developed on one of the five data sets and then applied to each of the four remaining data sets. We assessed the performance of the models with calibration characteristics, the correlation coefficient, and the root of the mean squared error. Results: The models GLM, SVM, RP, and RF showed satisfactory performance characteristics when validated on the validation data sets. All models showed poor performance characteristics for the deviating data set both for development and validation due to the deviating baseline characteristics compared to those of the other data sets. Conclusion: The performance of four models (GLM, SVM, RP, RF) on the development data sets was satisfactory. This was also the case for the validation data sets, except when these models were developed on the deviating data set. The NN models showed a much worse performance on the validation data sets than on the development data sets.
DOCUMENT
Routine immunization (RI) of children is the most effective and timely public health intervention for decreasing child mortality rates around the globe. Pakistan being a low-and-middle-income-country (LMIC) has one of the highest child mortality rates in the world occurring mainly due to vaccine-preventable diseases (VPDs). For improving RI coverage, a critical need is to establish potential RI defaulters at an early stage, so that appropriate interventions can be targeted towards such population who are identified to be at risk of missing on their scheduled vaccine uptakes. In this paper, a machine learning (ML) based predictive model has been proposed to predict defaulting and non-defaulting children on upcoming immunization visits and examine the effect of its underlying contributing factors. The predictive model uses data obtained from Paigham-e-Sehat study having immunization records of 3,113 children. The design of predictive model is based on obtaining optimal results across accuracy, specificity, and sensitivity, to ensure model outcomes remain practically relevant to the problem addressed. Further optimization of predictive model is obtained through selection of significant features and removing data bias. Nine machine learning algorithms were applied for prediction of defaulting children for the next immunization visit. The results showed that the random forest model achieves the optimal accuracy of 81.9% with 83.6% sensitivity and 80.3% specificity. The main determinants of vaccination coverage were found to be vaccine coverage at birth, parental education, and socio-economic conditions of the defaulting group. This information can assist relevant policy makers to take proactive and effective measures for developing evidence based targeted and timely interventions for defaulting children.
MULTIFILE
The aviation industry is expected to grow at a pace of 4 % per annum in the coming years, therefore it is necessary to have techniques that support the management of the resources at hand in the best possible way so that facility expansion is delayed as much as possible with the corresponding capital savings.
DOCUMENT
Designing lead-free piezoelectric ceramics with tailored electrical properties remains a critical challenge for various applications. In this paper we present a novel methodology integrating Machine Learning (ML) and optimization procedures to fine-tune electrical properties in lead-free (1-x) Na0.5 Bi0.5 TiO3 - x CaTiO3 piezoelectric ceramics. A comprehensive dataset of dielectric measurements serves as the foundation for training ML models that accurately predict the permittivity (𝜀′) and dielectric loss (tan 𝛿) as functions of Ca2+concentration (x % Ca), temperature and frequency. Two ML techniques are evaluated: random forest regression, and Multi-Layer Perceptron neural network Regression (MLPR). The MLPR model exhibited a superior regression performance, achieving a correlation coefficient of 0.931 and a root mean squared error of 0.029. The MLPR was then optimized by the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to maximizes 𝜀′ while minimizes tan 𝛿. Within the NSGA-II framework, the optimal values were found at the Pareto curve knee, corresponding to a frequency, temperature, and x % Ca of 609.739 kHz, 398.15 K, and 6.10, respectively, resulting in 𝜀′ equal to 857.87 and tan 𝛿 equal to 0.0120. This approach demonstrates the effectiveness of combining ML andoptimization for designing the electrical properties of piezoelectric ceramics, paving the way for more efficient and targeted material development.
DOCUMENT