The third presentation focuses on critical factors related to the development of a professional learning community (PLC) in primary schools. A cyclic method was developed to stimulate the development of PLC's and this method has been tested in fifteen schools. In the analysis, critical aspects according to the method as well as according to the organisation process are described.
Dit artikel verscheen eerder in Mechatronica&MachinebouwOp de Roscon-conferentie afgelopen september heeft Microsoft een experimentele versie van Ros voor Windows gereleaset. Traditioneel werkt dat robotbesturingssysteem alleen op Linux, dus hiermee is het toegankelijk geworden voor een grote nieuwe groep gebruikers. Saxion-onderzoeker Wilco Bonestroo vertelt op basis van praktijkervaringen over de mogelijkheden van Ros voor de industrie.
MULTIFILE
Er is behoefte aan mensen die bijdragen leveren aan de ontwikkeling van technische producten en processen. Onderwijs heeft de opdracht de technische geletterdheid van leerlingen te ontwikkelen en te zorgen dat ze zich prettig voelen bij het hanteren van techniek. Deze studie focust op de bijdrage die Mindtools hieraan leveren. Mindtools zijn op ICT gebaseerde leermiddelen die samenwerkend constructivistisch leren en hoger-orde (kritisch en creatief) denken stimuleren. Het begrip Direct Manipulation Environments (DME's), een subklasse van Mindtools, kenmerkt concrete leermiddelen zoals de microwerelden "Lego Mindstorms" en "Techno Logica". Deze microwerelden functioneren op basis van een materieel technisch model dat direct via een computer¬programma bestuurd wordt en taken kan uitvoeren (robots). De leertaak voor de leerling kan zich bewegen op het continuüm van het zelf programmeren van een kant-en-klaar materieel model dat bepaalde taken moet uitvoeren tot en met het zelf bedenken, bouwen en programmeren van een dergelijk model dat een of meer taken kan uitvoeren. Op grond van eerder literatuuronderzoek en een casestudie veronderstellen we dat het educatief toepassen van DME's bijdraagt aan de ontwikkeling van de technische geletterdheid van leerlingen. Hoewel definiëring van technische geletterdheid meer aandacht vraagt, zijn de volgende drie dimensies voor onze analyses bruikbaar gebleken: inhoud (zoals feiten, concepten, voorschriften), praktijk (het handelen, het materiële, doen en realiseren) en de cognitieve dimensie (denkvaardigheden en denkhoudingen). Het is aannemelijk dat door het toepassen van DME's domeinspecifieke concepten en kennis ontwikkeld wordt. Het denken van leerlingen is gekoppeld aan contexten en taken en moet niet geïsoleerd worden bestudeerd. We concentreren ons in deze studie vooral op onderzoek naar de dimensie van de denkvaardigheden en denkhoudingen (het denken van leerlingenduo's bij het oplossen van een probleemtaak) door het analyseren van de verbale interactie op kenmerken van kritisch - en creatief denken. Er is gebruik gemaakt van een Techno Logica leeromgeving bestaande uit een computer met software, een interface, bestuurbare materialen zoals lampjes en motors, en een zelfinstructie handleiding. Twee in complexiteit toenemende probleemtaken, ieder gebaseerd op een kant-en-klaar materieel model (Verkeerslicht en Reuzenrad), zijn gebruikt om de leerlingen besturingen te laten ontwerpen en testen. Dit proces werd op video opgenomen. We veronderstellen dat Techno Logica een bruikbare Mindtool is wanneer werken ermee bijdraagt aan technologische geletterdheid, in de zin dat er sprake is van probleemoplossen en hoger orde denken. Om dit te operationaliseren ontwierpen we een gestructureerd observatie-instrument op basis van het IOWA Integrated Thinking Model en de theorie over denkhoudingen (Costa, 2000). Hiermee werd het voorkomen en de diversiteit van denkvaardigheden en denkhoudingen in de verbale acties en interactie gescoord. Op basis van onze waarnemingen concluderen we dat veel interactie en handelen eerder geduid kan worden als uitingen van denken dan trial and error. Er zijn indicaties dat de leeromgeving en probleemtaken leiden tot ontwikkeling van expertise waardoor een nieuwe (moeilijkere) probleemtaak efficiënter en effectiever opgelost wordt. We vragen we aandacht voor de rol van de docent. We ervaren immers dat nieuwe leermiddelen niet gemakkelijk geadopteerd worden door leerkrachten.
Verduurzaming van de chemische en landbouwsector is essentieel om de klimaat- en circulaire doelstellingen te halen. Eén van de mogelijkheden om de chemische sector te vergroenen is om hernieuwbare grondstoffen als feedstock voor productie te gebruiken. Met name laagwaardige reststromen uit de agrarische sector komen hiervoor in aanmerking. In dit project wordt beoogd om koeienurine, die gescheiden is opgevangen van de ontlasting, te valoriseren richting hoogwaardige componenten voor (fijn)chemie en meststoffen. De focus zal in eerste instantie liggen op de isolatie van hippuurzuur en hieruit te synthetiseren benzoëzuur en glycine en de verwaarding van de resterende fractie richting natuurlijke meststoffen (kalium en ureum) voor de akker/tuinbouw. Het verkregen groene benzoëzuur is een goed alternatief voor het huidige uit de petrochemie gesynthetiseerde zuur en kan bijvoorbeeld als natuurlijk conserveringsmiddel in mengvoeders worden gebruikt. In een latere fase zullen ook overige waardevolle componenten (allantoine, creatinine, creatine, etc.) uit urine van koeien worden geïsoleerd en gevaloriseerd. Een succesvol project draagt bij aan het verbeteren van de business case van veetelers en maakt de scheiding van urine en ontlasting in de stallen aantrekkelijker. Additionele revenuen die uit de bioraffinage van urine worden verkregen kunnen gebruikt worden om de gedane investeringen in het “koeientoilet” terug te verdienen. De scheiding van urine en ontlasting levert een significante reductie in ammoniak-emissies op en draagt hiermee bij aan het oplossen van het “stikstofprobleem”. Reductie van CO2 wordt o.a. bewerkstelligd door verminderd gebruik van kunstmest en vervanging van uit de petrochemie afkomstige chemicaliën (benzoëzuur) door synthese uit natuurlijke (hernieuwbare) grondstoffen.
Nederland streeft naar een verduurzaming van het energiesysteem. In 2020 moet 14% van onze energie duurzaam opgewekt zijn, waarbij de zon, naast wind, als belangrijkste duurzame energiebron gezien wordt. Systemen voor geconcentreerde zonne-energie kunnen worden ingezet voor het opwekken van elektrische en/of thermische energie. Grootschalige systemen (multi-MW) met spiegels worden reeds toegepast in zonnevelden. Het HAN Lectoraat Duurzame Energie werkt al enige jaren aan innovatieve systemen met lenzen waarbij naast het concentreren van direct licht het overblijvende diffuse licht beschikbaar is voor verlichting van de onderliggende ruimte. We willen de in eerdere projecten opgedane kennis en ervaring nu inzetten in een nieuw project, waarin we streven van prototype naar toepassing te komen. De bedrijven zijn benaderd over de nog openstaande vragen. Hieruit is een nieuwe onderzoeksvraag gevormd: Hoe kan voor systemen van geconcentreerde zonne-energie voor toepassingen in glastuinbouw en gebouwde omgevingen voor de productie van zowel elektriciteit als warmte, de energie-opbrengst verhoogd worden door een optimaler gebruik van de lichtinval en met een compacter en duurzamer systeem? In dit project, CONSOLE (acroniem voor CONcentrated SOLar Energy), gaan we werken aan het optimaliseren van de bestaande systemen en het ontwerpen van verbeterde (hybride) systemen voor het opwekken van warmte en elektriciteit in kassen en gebouwde omgeving. We gebruiken hiervoor zowel modellering als meten en testen en komen vanuit een inventarisatie tot een pakket van eisen wat uiteindelijk tot verbeterde prototypes leidt die geschikt zijn voor commerciële toepassing. We doen dit vanuit een nauwe samenwerking met 12 MKB’s, een branche-organisatie en een Centre of Expertise. Daarnaast is er een directe koppeling met het onderwijs, door de betrokkenheid van docent-onderzoekers en studenten in semesterprojecten, stages en afstudeerprojecten.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.