Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT
Abstract BackgroundFrailty is a syndrome that is defined as an accumulation of deficits in physical, psychological, and social domains. On a global scale, there is an urgent need to create frailty-ready healthcare systems due to the healthcare burden that frailty confers on systems and the increased risk of falls, healthcare utilization, disability, and premature mortality. Several studies have been conducted to develop prediction models for predicting frailty. Most studies used logistic regression as a technique to develop a prediction model. One area that has experienced significant growth is the application of Bayesian techniques, partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. ObjectiveWe compared ten different Bayesian networks as proposed by ten experts in the field of frail elderly people to predict frailty with a choice from ten dichotomized determinants for frailty. MethodsWe used the opinion of ten experts who could indicate, using an empty Bayesian network graph, the important predictors for frailty and the interactions between the different predictors. The candidate predictors were age, sex, marital status, ethnicity, education, income, lifestyle, multimorbidity, life events, and home living environment. The ten Bayesian network models were evaluated in terms of their ability to predict frailty. For the evaluation, we used the data of 479 participants that filled in the Tilburg Frailty indicator (TFI) questionnaire for assessing frailty among community-dwelling older people. The data set contained the aforementioned variables and the outcome ”frail”. The model fit of each model was measured using the Akaike information criterion (AIC) and the predictive performance of the models was measured using the area under the curve (AUC) of the receiver operator characteristic (ROC). The AUCs of the models were validated using bootstrapping with 100 repetitions. The relative importance of the predictors in the models was calculated using the permutation feature importance algorithm (PFI). ResultsThe ten Bayesian networks of the ten experts differed considerably regarding the predictors and the connections between the predictors and the outcome. However, all ten networks had corrected AUCs 0.700. Evaluating the importance of the predictors in each model, ”diseases or chronic disorders” was the most important predictor in all models (10 times). The predictors ”lifestyle” and ”monthly income” were also often present in the models (both 6 times). One or more diseases or chronic disorders, an unhealthy lifestyle, and a monthly income below 1,800 euro increased the likelihood of frailty. ConclusionsAlthough the ten experts all made different graphs, the predictive performance was always satisfying (AUCs 0.700). While it is true that the predictor importance varied all the time, the top three of the predictor importance consisted of “diseases or chronic disorders”, “lifestyle” and “monthly income”. All in all, asking for the opinion of experts in the field of frail elderly to predict frailty with Bayesian networks may be more rewarding than a data-driven forecast with Bayesian networks because they have expert knowledge regarding interactions between the different predictors.
LINK
The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF.
DOCUMENT
Abstract Background: COVID-19 was first identified in December 2019 in the city of Wuhan, China. The virus quickly spread and was declared a pandemic on March 11, 2020. After infection, symptoms such as fever, a (dry) cough, nasal congestion, and fatigue can develop. In some cases, the virus causes severe complications such as pneumonia and dyspnea and could result in death. The virus also spread rapidly in the Netherlands, a small and densely populated country with an aging population. Health care in the Netherlands is of a high standard, but there were nevertheless problems with hospital capacity, such as the number of available beds and staff. There were also regions and municipalities that were hit harder than others. In the Netherlands, there are important data sources available for daily COVID-19 numbers and information about municipalities. Objective: We aimed to predict the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands, using a data set with the properties of 355 municipalities in the Netherlands and advanced modeling techniques. Methods: We collected relevant static data per municipality from data sources that were available in the Dutch public domain and merged these data with the dynamic daily number of infections from January 1, 2020, to May 9, 2021, resulting in a data set with 355 municipalities in the Netherlands and variables grouped into 20 topics. The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. Results: The final prediction model had an R2 of 0.63. Important properties for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality in the Netherlands were exposure to particulate matter with diameters <10 μm (PM10) in the air, the percentage of Labour party voters, and the number of children in a household. Conclusions: Data about municipality properties in relation to the cumulative number of confirmed infections in a municipality in the Netherlands can give insight into the most important properties of a municipality for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality. This insight can provide policy makers with tools to cope with COVID-19 and may also be of value in the event of a future pandemic, so that municipalities are better prepared.
LINK
Learning teams in higher education executing a collaborative assignment are not always effective. To remedy this, there is a need to determine and understand the variables that influence team effectiveness. This study aimed at developing a conceptual framework, based on research in various contexts on team effectiveness and specifically team and task awareness. Core aspects of the framework were tested to establish its value for future experiments on influencing team effectiveness. Results confirmed the importance of shared mental models, and to some extent mutual performance monitoring for learning teams to become effective, but also of interpersonal trust as being conditional for building adequate shared mental models. Apart from the importance of team and task awareness for team effectiveness it showed that learning teams in higher education tend to be pragmatic by focusing primarily on task aspects of performance and not team aspects. Further steps have to be taken to validate this conceptual framework on team effectiveness.
DOCUMENT
Characteristics of the physical childcare environment are associated with children’s sedentary behavior (SB) and physical activity (PA) levels. This study examines whether these associations are moderated by child characteristics. A total of 152 1- to 3-year-old children from 22 Dutch childcare centers participated in the study. Trained research assistants observed the physical childcare environment, using the Environment and Policy Assessment Observation (EPAO) protocol. Child characteristics (age, gender, temperament and weight status) were assessed using parental questionnaires. Child SB and PA was assessed using Actigraph GT3X+ accelerometers. Linear regression analyses including interaction terms were used to examine moderation of associations between the childcare environment and child SB and PA. Natural elements and portable outdoor equipment were associated with less SB and more PA. In addition, older children, boys and heavier children were less sedentary and more active, while more use of childcare and an anxious temperament were associated with more SB. There were various interactions between environmental factors and child characteristics. Specific physical elements (e.g., natural elements) were especially beneficial for vulnerable children (i.e., anxious, overactive, depressive/withdrawn, overweight). The current study shows the importance of the physical childcare environment in lowering SB and promoting PA in very young children in general, and vulnerable children specifically. Moderation by child characteristics shows the urgency of shaping childcare centers that promote PA in all children, increasing equity in PA promotion in childcare.
DOCUMENT
Background Physical activity after bariatric surgery is associated with sustained weight loss and improved quality of life. Some bariatric patients engage insufficiently in physical activity. The aim of this study was to examine whether and to what extent both physical activity and exercise cognitions have changed at one and two years post-surgery, and whether exercise cognitions predict physical activity. Methods Forty-two bariatric patients (38 women, 4 men; mean age 38 ± 8 years, mean body mass index prior to surgery 47 ± 6 kg/m²), filled out self-report instruments to examine physical activity and exercise cognitions pre- and post surgery. Results Moderate to large healthy changes in physical activity and exercise cognitions were observed after surgery. Perceiving less exercise benefits and having less confidence in exercising before surgery predicted less physical activity two years after surgery. High fear of injury one year after surgery predicted less physical activity two years after surgery. Conclusion After bariatric surgery, favorable changes in physical activity and exercise cognitions are observed. Our results suggest that targeting exercise cognitions before and after surgery might be relevant to improve physical activity.
MULTIFILE
Thirty to sixty per cent of older patients experience functional decline after hospitalisation, associated with an increase in dependence, readmission, nursing home placement and mortality. First step in prevention is the identification of patients at risk. The objective of this study is to develop and validate a prediction model to assess the risk of functional decline in older hospitalised patients.
DOCUMENT
Background: Parents influence their children’s nutrition behavior. The relationship between parental influences and children’s nutrition behavior is often studied with a focus on the dyadic interaction between the parent and the child. However, parents and children are part of a broader system: the family. We investigated the relationship between the family nutrition climate (FNC), a family-level concept, and children’s nutrition behavior. Methods: Parents of primary school-aged children (N = 229) filled in the validated family nutrition climate (FNC) scale. This scale measures the families’ view on the consumption of healthy nutrition, consisting of four dierent concepts: value, communication, cohesion, and consensus. Parents also reported their children’s nutrition behavior (i.e., fruit, vegetable, water, candy, savory snack, and soda consumption). Multivariate linear regression analyses, correcting for potential confounders, were used to assess the relationship between the FNC scale (FNC-Total; model 1) and the dierent FNC subscales (model 2) and the child’s nutrition behavior. Results: FNC-Total was positively related to fruit and vegetable intake and negatively related to soda consumption. FNC-value was a significant predictor of vegetable (positive) and candy intake (negative), and FNC-communication was a significant predictor of soda consumption (negative). FNC-communication, FNC-cohesion, and FNC-consensus were significant predictors (positive, positive, and negative, respectively) of water consumption. Conclusions: The FNC is related to children’s nutrition behavior and especially to the consumption of healthy nutrition. These results imply the importance of taking the family-level influence into account when studying the influence of parents on children’s nutrition behavior. Trial registration: Dutch Trial Register NTR6716 (registration date 27 June 2017, retrospectively registered), METC163027, NL58554.068.16, Fonds NutsOhra project number 101.253.
DOCUMENT
Stevenson & Landström (2002) state that Opportunity, Ability and Motives predict entrepreneurship in general. Connecting thirty previous studies we test if the market awareness, endurance, planning and preparation as entrepreneurial ability factors, staff as opportunity factor and the reason for transfer as motive predicts three short term performance (needed transfer time, satisfaction and emotional attachment after transfer). We tested our hypotheses on a representative sample of 130 Dutch business owners who succeeded in a business transferring in 2005 and 2006. Market awareness predicts a faster transfer. Surprisingly more planning and preparation is the best predictor for a long transfer time as does the absence of the selling business owner. More or less forced transfers (illness, declining performance) predict lower satisfaction were as endurance predicts a higher satisfaction. This is valuable information for buyers, business brokers, accountants and bankers. The operationalisation of transfer performance seems vital. All main predictors, even the control variables, show only effect on either the needed transfer time (effectiveness measure) or satisfaction (experience measure). This confirms earlier findings (Van Teeffelen, 2007b). Our common challenge in future is to compare internationally the succeeded, non-succeeded transfer and exits.
DOCUMENT