Politie, Openbaar Ministerie, wetenschap en onderwijs vinden elkaar in het project Follow The Money. Dit project ging begin dit jaar van start. In Follow The Money staat innovatie in het opsporen van illegale geldstromen en fraude rondom de georganiseerde hennepteelt centraal. De politie werkt in het project samen met het Openbaar Ministerie, de Universiteit Maastricht en Zuyd Hogeschool. Vijf studenten zijn vanuit het iLab met diverse onderzoeken binnen het project aan de slag gegaan: “Dit project gaat ons verder brengen.”
Sinds september 2015 is de ‘business rule management wereld’ / ‘decision management wereld’ weer een standaard rijker: The Decision Model and Notation (DMN). De Object Management Group (OMG) heeft deze nieuwe standaard uitgebracht met als doel een standaardtaal te creëren om 1) requirements voor beslissingen en 2) de beslissingen zelf te modelleren. De adoptie van DMN heeft een wat lange aanloop gehad, maar begint nu serieuze vormen aan te nemen. Om deze reden brengen wij een vierdelige serie over DMN en het gebruik van DMN uit. In dit deel (deel 3) wordt er verder gegaan met stap 4. Wat zijn de benodigde feittype om de beslissing te nemen?
De meest gebruikte opbouw in business intelligence, predictive analitics en analytics modellen is de moeilijkheidsgraad: 1) descriptive, 2) diagnostic, 3) predictive en 4) prescriptive. Deze schaal vertelt iets over de volwassenheid van het gebruik van data door de organisatie. Een model dat niet op zichzelf staat en een achterliggende methode kent is de data driehoek van EDM (Figuur 1), welke in dit artikel zal worden toegelicht.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Kwaliteitscontroles in productieprocessen in de maakindustrie zijn vaak destructief en daarmee niet duurzaam. In dit project onderzoeken we hoe door toepassing van process mining op real time sensor data de kwaliteitscontrole al tijdens het productieproces kan worden uitgevoerd en potentiële problemen vroegtijdig ontdekt.Doel Het doel van het project is om op basis van realtime data de kwaliteit van het eindproduct van het productieproces te kunnen voorspellen en waar nodig het productieproces bij te sturen. Hiermee kan de industrie duurzamer werken. Resultaten Het project levert een AI software toolkit op met methoden en algoritmen voor toepassing in de productieprocessen in verschillende industrieën. Looptijd 15 januari 2021 - 15 november 2024 Aanpak Nieuwe process mining algoritmes worden ontwikkeld en getoetst in case studies bij verschillende industriële bedrijven. Op basis van de uitkomsten wordt een software toolkit ontwikkeld voor toepassing in de praktijk. Impact op onderwijs Studenten van instituut voor ICT gaan, samen met studenten van TU Eindhoven, cases studies uitvoeren bij verschillende industrieën. Cofinanciering Het project wordt gefinancierd door NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek).
Production processes can be made ‘smarter’ by exploiting the data streams that are generated by the machines that are used in production. In particular these data streams can be mined to build a model of the production process as it was really executed – as opposed to how it was envisioned. This model can subsequently be analyzed and stress-tested to explore possible causes of production prob-lems and to analyze what-if scenarios, without disrupting the production process itself. It has been shown that such models can successfully be used to diagnose possible causes of production problems, including scrap products and machine defects. Ideally, they can even be used to model and analyze production processes that have not been implemented yet, based on data from existing production pro-cesses and techniques from artificial intelligence that can predict how the new process is likely to be-have in practice in terms of data that its machines generate. This is especially important in mass cus-tomization processes, where the process to create each product may be unique, and can only feasibly be tested using model- and data-driven techniques like the one proposed in this project. Against this background, the goal of this project is to develop a method and toolkit for mining, mod-elling and analyzing production processes, using the time series data that is generated by machines, to: (i) analyze the performance of an existing production process; (ii) diagnose causes of production prob-lems; and (iii) certify that a new – not yet implemented – production process leads to high-quality products. The method is developed by researching and combining techniques from the area of Artificial Intelli-gence with techniques from Operations Research. In particular, it uses: process mining to relate time series data to production processes; queueing networks to determine likely paths through the produc-tion processes and detect anomalies that may be the cause of production problems; and generative adversarial networks to generate likely future production scenarios and sample scenarios of production problems for diagnostic purposes. The techniques will be evaluated and adapted in implementations at the partners from industry, using a design science approach. In particular, implementations of the method are made for: explaining production problems; explaining machine defects; and certifying the correct operation of new production processes.