The Netherlands are one of the frontrunners in stimulating electric mobility in Europe when it comes to the charging infrastructure density and electric vehicle adoption. Municipalities play an instrumental role in the rollout of public charging infrastructure while they have little insight in the relevant key performance indicators of the charging infrastructure as a means to support effective decision making. This paper aims to contribute to providing a more thorough understanding of relevant key performance indicators for public charging infrastructure. An approach is presented that explores result and performance indicators to support policy makers optimizing the roll out of and improvement of the business case for charging infrastructure.
Since the first release of modern electric vehicles, researchers and policy makers have shown interest in the deployment and utilization of charging infrastructure. Despite the sheer volume of literature, limited attention has been paid to the characteristics and variance of charging behavior of EV users. In this research, we answer the question: which scientific approaches can help us to understand the dynamics of charging behavior in charging infrastructures, in order to provide recommendations regarding a more effective deployment and utilization of these infrastructures. To do so, we propose a conceptual model for charging infrastructure as a social supply–demand system and apply complex system properties. Using this conceptual model, we estimate the rate complexity, using three developed ratios that relate to the (1) necessity of sharing resources, (2) probabilities of queuing, and (3) cascading impact of transactions on others. Based on a qualitative assessment of these ratios, we propose that public charging infrastructure can be characterized as a complex system. Based on our findings, we provide four recommendations to policy makers for taking efforts to reduce complexity during deployment and measure interactions between EV users using systemic metrics. We further point researchers and policy makers to agent-based simulation models that capture interactions between EV users and the use complex network analysis to reveal weak spots in charging networks or compare the charging infrastructure layouts of across cities worldwide.
Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
Economic and environmental sustainability are the two main drivers behind today’s logistics innovation. On the one hand, Industry 4.0 technologies are leading towards self-organizing logistics by enabling autonomous vehicles, which can significantly make logistics transport efficient. Detailed impact analysis of autonomous vehicles in repetitive, short-distance inter-hub transport in logistics hubs like XL Business park is presently being investigated in KIEM project STEERS. On the other hand, the zero-emission technology (such as battery electric) can complement the autonomous logistics transport in making such a logistics hub climate-neutral. In such a scenario, an automatic vehicle charging environment (i.e., charging infrastructure and energy supply) for autonomous electric vehicles will play a crucial role in maximizing the overall operational efficiency and sustainability by reducing the average idle time of both vehicles and charging infrastructure. The project INGENIOUS explores an innovative idea for presenting a sustainable and environment-friendly solution for meeting the energy demand and supply for autonomous electric vehicles in a logistics hub. It will develop and propose an intelligent charging environment for operating autonomous electric vehicles in XL Business park by considering its real-life settings and operational demand. The project combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen and The University of Twente), industry partners (HyET Solar Netherlands BV, Distribute, Bolk Container Transport and Combi Terminal Twente), and public institutes (XL Business Park, Port of Twente, Regio Twente and Industriepark Kleefse Waard). The project results will form a sound basis for developing a real-life demonstrator in the XL Business park in the subsequent RAAK Pro SAVED project. A detailed case study for Industriepark Kleefse Waard will also be carried out to showcase the broader applicability of the INGENIOUS concept.