With a growing number of electric vehicles (EVs) on the road and charging infrastructure investments lagging, occupation of installed charging stations is growing and available charging points for EV drivers are becoming scarce. Installing more charging infrastructure is problematic from both a public(tax payers money, parking availability) and private (business case) perspective. Increasing the utilization of available charging stations is one of the solutions to satisfy the growing charging need of EV drivers and managing other stakeholders interests. Currently, in the Netherlands only 15-25% of the time connected to a public charging station is actually used for charging. The longest 4% of all sessions account for over 20% of all time connected while barely using this time for actually charging. The behaviour in which EV users stay connected to a charging station longer than necessary to charge their car is called “charging station hogging”. Using a large dataset (1.3 million sessions) on publiccharging infrastructure usage, this paper analyses the inefficient use of charging stations along three axes: where the hogging takes place (spatial), by whom (the characteristics of the user) and during which time frames (day, week and year). Using the results potential solutions are evaluated and assessed including their potential and pitfalls.
As the Dutch electric vehicle (EV) fleet continues to expand, so will the amount of charging sessions increase. This expanding demand for energy will add on to the already existing strain on the grid, primarily during peak hours on workdays in the early morning and evening. This growing energy demand requires new methods to handle the charging of EVs, to distribute the available energy in the most effective way. Therefore, a large number of ‘smart charging’ initiatives have recently been developed, whereby the charging session of the EV is based on the conditions of the energy grid. However, the term smart charging is used for a variety of smart charging initiatives, often involving different optimization strategies and charging processes. For most practitioners, as well as academics, it is hard to distinguish the large range of smart charging initiatives initiated in recent years, how they differentiate from each other and how they contribute to a smarter charging infrastructure. This paper has the objective to provide an overview of smart charging initiatives in the Netherlands and develop a categorization of smart charging initiatives regarding objectives, proposed measures and intended contributions. We will do so by looking at initiatives that focus on smart charging at a household level, investigating the smart charging possibilities for EV owners who either make use of a private or (semi-)public charging point. The different smart charging initiatives will be analyzed and explicated in combination with a literature study, focusing on the different optimization strategies and requirements to smart charge an electric vehicle.
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam University of Applied Sciences, in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht, and the Metropolitan Region of Amsterdam Electric, developed both the back- and front-end of a charging infrastructure assessment platform that processes and represents real-life charging data. Charging infrastructure planning and design methods described in the literature use geographic information system data, traffic flow data of non-EV vehicles, or geographical distributions of, for example, refueling stations for combustion engine vehicles. Only limited methods apply real-life charging data. Rolling out public charging infrastructure is a balancing act between stimulating the transition to zero-emission transport by enabling (candidate) EV drivers to charge, and limiting costly investments in public charging infrastructure. Five key performance indicators for charging infrastructure utilization are derived from literature, workshops, and discussions with practitioners. The paper describes the Data Warehouse architecture designed for processing large amounts of charging data, and the web-based assessment platform by which practitioners get access to relevant knowledge and information about the current performance of existing charging infrastructure represented by the key performance indicators developed. The platform allows stakeholders in the decision-making process of charging point installation to make informed decisions on where and how to expand the already existing charging infrastructure. The results are generalizable beyond the case study regions in the Netherlands and can serve the roll-out of charging infrastructure, both public and semi-public, all over the world.