Abstract: This paper provides a brief review of the methodological composition of Risk Based Inspection (RBI) and the application of the methodology for safeguarding hull integrity of offshore floating structures, with fatigue as primary degradation mechanism. The work has a distinct focus on the opportunities RBI has to offer in combination with Structural Health Monitoring. In order to provide a clear picture of the state of the art knowledge, the current practices and regulations are briefly discussed after which the RBI methodology is introduced, the differences in guidelines and applications discussed and an 8-step approach is proposed. Subsequently, the methodology is outlined as an instrument for determining the residual fatigue life and the inspection scope and –schedule and the methodological embedding within an Advisory Hull Monitoring System is discussed and proposed.
DOCUMENT
This paper outlines an investigation into the updating of fatigue reliability through inspection data by means of structural correlation. The proposed methodology is based on the random nature of fatigue fracture growth and the probability of damage detection and introduces a direct link between predicted crack size and inspection results. A distinct focus is applied on opportunities for utilizing inspection information for the updating of both inspected and uninspected (or uninspectable) locations.
DOCUMENT
Abstract: The key challenge of managing Floating Production Storage and Offloading assets (FPSOs) for offshore hydrocarbon production lies in maximizing the economic value and productivity, while minimizing the Total Cost of Ownership and operational risk. This is a comprehensive task, considering the increasing demands of performance contracting, (down)time reduction, safety and sustainability while coping with high levels of phenomenological complexity and relatively low product maturity due to the limited amount of units deployed in varying operating conditions. Presently, design, construction and operational practices are largely influenced by high-cycle fatigue as a primary degradation parameter. Empirical (inspection) practices are deployed as the key instrument to identify and mitigate system anomalies and unanticipated defects, inherently a reactive measure. This paper describes a paradigm-shift from predominant singular methods into a more holistic and pro-active system approach to safeguard structural longevity. This is done through a short review of several synergetic Joint Industry Projects (JIP’s) from different angles of incidence on enhanced design and operations through coherent a-priori fatigue prediction and posteriori anomaly detection and -monitoring.
DOCUMENT