Er zijn veel verschillende sensoren beschikbaar die gebruikt kunnen worden om data in te winnen. Daarnaast zijn er veel verschillende werkwijzen om aan de slag te gaan met sensoren. Om een gestandaardiseerde werkwijze op te stellen, is een groep 4e-jaars AGIS studenten van de HAS green academy in het kader van het SURF project SMART sensordata infrastructuur aan de slag gegaan met het proces omtrent het inwinnen van data met sensoren. Hier is een werkwijze uit komen rollen die voor iedereen en overal werkt. In deze handleiding wordt de werkwijze stap voor stap uitgelegd.
MULTIFILE
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
Purpose People with dementia (PwD) often present Behavioral and Psychological Symptoms of Dementia, which include agitation, apathy, and wandering amongst others, also known as challenging behaviors (CBs). These CBs worsen the quality of life (QoL) of the PwD and are a major source/reason of (increased) caregiver burden. The intricate nature of the symptoms implies that there is no “one size fits all solution”, and necessitates tailored approaches for both PwDs and caregivers. To timely prevent these behaviors assistive technology can be utilized to guide caregivers by enabling remote monitoring of contextual, environmental, and behavioral parameters, and subsequently alarming nurses on early-stage behavioral changes prior to the presentation of CBs. Eventually, the system should propose an intervention/action to prevent escalation. In turn, improvement in QoL for both caregivers and PwD living in nursing homes (NHs) is expected. In the current project “MOnitoring Onbegrepen Gedrag bij Dementie met sensortechnologie” (MOOD-Sense), we aim to develop such a monitoring system. The strengths of this new monitoring system lie in its ability to align with the individual needs of the PwD, utilization of a combination of wearables and ambient sensors to obtain contextual data, such as location or sound, and predict or monitor CBs individually rather than in groups, thus facilitating person-centered care, based on ontological reasoning. The project is divided into three parts, Toolbox A, B and C. Toolbox A focuses on obtaining insight in which behaviors are challenging according to nurses and how they are described. Previous studies utilize clinical terminology to describe or classify behavior, we aim to employ concrete descriptions of behavior that are observable and independent of clinical terminology, aligning with nurses who are often the first to notice behavior and can be operationalized such that it can also be aligned with sensor data. As a result, an ontology will be developed based on the data such that sensor data can be integrated into the same conceptual information that standardizes the communication in our monitoring system. Toolbox B focuses on translating data coming from various sensors into the concepts expressed in the ontology, and timely communicate situations of interest to the caregivers. In Toolbox C the focus is exploring interventions/actions employed in practice to prevent CBs. Method In Toolbox A we used a qualitative approach to collect descriptions of CBs. For this purpose, we employed focus groups (FGs) with nursing staff who provide daily care to PwD. In Toolbox B pilot studies were conducted. A set of experiments using sensors in NHs were performed. During each pilot, multiple PwD with CBs in NHs were monitored with both ambient and wearables sensors. The pilots were iteratively approached, which means that insights from previous pilot studies were used to improve consecutive pilot studies. Lastly, the elaboration of Toolbox C is ongoing. Results and Discussion Regarding Toolbox A four FGs were conducted during the period from January 2023 to May 2024. Each FG was comprised of four nurses (n = 16). From the FGs we gained insights into behavioral descriptions and the context of CBs. Although data analysis has to be performed yet, there are indications that changes preceding CBs can be observed, such as frowning or clenching fists for agitation or aggression. Further results will be available soon. Regarding Toolbox B a monitoring system, based on sensors, is developed iteratively (see Figure 1) and piloted in three consecutive NHs from January 2021 to December 2023. Each pilot was comprised of two PwD (n = 6). Analysis of sensor data is ongoing.
LINK
Mondkapjes, of mondmaskers, zijn door de SARS-COV-2 pandemie niet meer uit het straatbeeld weg te denken. De kwaliteit en comfort van de pasvorm van medische en niet-medische mondmaskers wordt bepaald door hoe goed het mondmasker overeenkomt met de afmetingen van het gezicht van de drager. Echter is er geen goed overzicht van de antropometrie van het gelaat van de Nederlandse bevolking waardoor de pasvorm van mondmaskers nu vaak niet optimaal is. Er is dus vraag naar een laagdrempelige en veilige manier om gezichtskenmerken in kaart te brengen en betere ontwerprichtlijnen voor mondkapjes. Driedimensionaal (3D) scannen doormiddel van Light Detection and Ranging (LiDaR) technologie in combinatie met slimme algoritmes lijkt wellicht een manier om gezichtskenmerken snel en laagdrempelig vast te leggen bij grote groepen mensen. Daarnaast geeft het 3D scannen van gezichten de mogelijkheid om niet enkel de afmetingen van gezichten te meten, maar ook 3D pasvisualisaties uit te voeren. Hoewel 3D scannen geen nieuwe technologie is, is de LiDaR technologie pas sinds 2020 geïntegreerd in de Ipad en Iphone waardoor het toegankelijk gemaakt is voor consumenten. Doormiddel van een research through design benadering zal onderzocht worden of deze technologie gebruikt kan worden om betrouwbare en valide opnames te maken van gezichten en of er op basis hiervan ontwerprichtlijnen ontwikkeld kunnen worden. In dit KIEM GoCi-project zal daarnaast ingezet worden om een kennisbasis en netwerk op te bouwen voor een vervolg aanvraag over de inzet van 3D technologieën in de mode-industrie.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
De eiwittransitie slaat aan en zeewier, eendenkroos en reststromen van landbouwgewassen vormen een deel van de voedselbronnen van de toekomst. De kennis over de smaak van eiwitten en aminozuren is groeiende, maar de relatie tussen chemische structuur en smaak verdient aandacht en dat kan door te focussen op kleine peptiden en losse aminozuren. Het project “Aahminozuren!” maakt dat mogelijk. Met deze KIEM aanvraag willen de hogescholen Inholland (Delft, Amsterdam) en HZ University of Applied Sciences (Vlissingen) samen met het bedrijf Biorefinery Solutions (Raalte) verkennend onderzoek doen in een samenwerking met een helder lange termijnperspectief. Doelstelling is tot methoden te komen die het mogelijk maken om enkele kleine eiwitten - en de aminozuren waaruit die zijn opgebouwd – chemisch te karakteriseren en op een doelmatige wijze sensorisch te beoordelen. De deelnemende opleidingen zijn complementair qua expertise en hebben een gezamenlijke affiniteit voor de productie van nieuwe voedingscomponenten uit alternatieve plantaardige bronnen. Daarbij staat smaak voorop. Het langetermijnperspectief is om uit zeewier, eendenkroos en reststromen van landbouwgewassen waardevolle componenten te kunnen isoleren met een toegevoegde waarde op het gebied van smaak. De onderliggende kennis die de relaties tussen structuur en smaak verklaren zal zo kunnen worden gegenereerd, en academische kennis wordt rijp gemaakt voor toepassingen. Doel is ook om ons onderwijs met die kennis en onderzoeksmethoden te verrijken. Studenten hebben in dit project een grote rol. In juni 2021 hopen we met hen en met hun begeleiders een basis te hebben gelegd voor een verdergaande onderzoeksagenda.
Lectorate, part of HAS green academy
Lectorate, part of HAS green academy
Lectorate, part of NHL Stenden Hogeschool