Background & aims: Optimal nutritional support during the acute phase of critical illness remains controversial. We hypothesized that patients with low skeletal muscle area and -density may specifically benefit from early high protein intake. Aim of the present study was to determine the association between early protein intake (day 2–4) and mortality in critically ill intensive care unit (ICU) patients with normal skeletal muscle area, low skeletal muscle area, or combined low skeletal muscle area and -density. Methods: Retrospective database study in mechanically ventilated, adult critically ill patients with an abdominal CT-scan suitable for skeletal muscle assessment around ICU admission, admitted from January 2004 to January 2016 (n = 739). Patients received protocolized nutrition with protein target 1.2–1.5 g/kg/day. Skeletal muscle area and -density were assessed on abdominal CT-scans at the 3rd lumbar vertebra level using previously defined cut-offs. Results: Of 739 included patients (mean age 58 years, 483 male (65%), APACHE II score 23), 294 (40%) were admitted with normal skeletal muscle area and 445 (60%) with low skeletal muscle area. Two hundred (45% of the low skeletal muscle area group) had combined low skeletal muscle area and -density. In the normal skeletal muscle area group, no significant associations were found. In the low skeletal muscle area group, higher early protein intake was associated with lower 60-day mortality (adjusted hazard ratio (HR) per 0.1 g/kg/day 0.82, 95%CI 0.73–0.94) and lower 6-month mortality (HR 0.88, 95%CI 0.79–0.98). Similar associations were found in the combined low skeletal muscle area and -density subgroup (HR 0.76, 95%CI 0.64–0.90 for 60-day mortality and HR 0.80, 95%CI 0.68–0.93 for 6-month mortality). Conclusions: Early high protein intake is associated with lower mortality in critically ill patients with low skeletal muscle area and -density, but not in patients with normal skeletal muscle area on admission. These findings may be a further step to personalized nutrition, although randomized studies are needed to assess causality.
DOCUMENT
OBJECTIVES: Amplitude-mode (A-mode) ultrasonography is a promising technique to monitor loss and recovery of skeletal muscle in patients with burns. However, its clinimetric properties are unknown. Therefore, we determined its feasibility, interrater, and intrarater reliability, and clinical utility.METHODS: Skeletal muscle thickness of upper arms and legs was assessed longitudinally in hospitalized adult patients with ≥ 5 % total body surface area (TBSA) burns, by pairs of two out of five raters. Feasibility was evaluated by % successful assessments, reliability by intra-class correlation coefficients (ICCs), and clinical utility by smallest detectable change (SDC).RESULTS: Thirty-four patients participated (77 % male; mean age 48 ± 17 y, median TBSA burned 12 % [IQR 7-19]). Images were acquired on 69 % of planned occasions, and 89 % of images could be analyzed. Overall interrater ICCs were ≥ 0.84 (for pairs: 0.63-0.99) and intrarater ICCs were ≥ 0.95 (for pairs: 0.45-0.99). The overall interrater SDC was ≤ 33 % of the measured mean (for pairs: 3-52 %), while intrarater SDC was ≤ 20 % (for pairs: 3-48 %). All five raters could measure legs with moderate to excellent reliability, whereas for arms some demonstrated poor reliability.CONCLUSION: A-mode ultrasonography assessment of skeletal muscle in patients with burns is feasible. However, reliability and clinical utility are rater-dependent; therefore we recommend assessments by the same rater.
DOCUMENT
BACKGROUND: Muscle quantity at intensive care unit (ICU) admission has been independently associated with mortality. In addition to quantity, muscle quality may be important for survival. Muscle quality is influenced by fatty infiltration or myosteatosis, which can be assessed on computed tomography (CT) scans by analysing skeletal muscle density (SMD) and the amount of intermuscular adipose tissue (IMAT). We investigated whether CT-derived low skeletal muscle quality at ICU admission is independently associated with 6-month mortality and other clinical outcomes.METHODS: This retrospective study included 491 mechanically ventilated critically ill adult patients with a CT scan of the abdomen made 1 day before to 4 days after ICU admission. Cox regression analysis was used to determine the association between SMD or IMAT and 6-month mortality, with adjustments for Acute Physiological, Age, and Chronic Health Evaluation (APACHE) II score, body mass index (BMI), and skeletal muscle area. Logistic and linear regression analyses were used for other clinical outcomes.RESULTS: Mean APACHE II score was 24 ± 8 and 6-month mortality was 35.6%. Non-survivors had a lower SMD (25.1 vs. 31.4 Hounsfield Units (HU); p < 0.001), and more IMAT (17.1 vs. 13.3 cm(2); p = 0.004). Higher SMD was associated with a lower 6-month mortality (hazard ratio (HR) per 10 HU, 0.640; 95% confidence interval (CI), 0.552-0.742; p < 0.001), and also after correction for APACHE II score, BMI, and skeletal muscle area (HR, 0.774; 95% CI, 0.643-0.931; p = 0.006). Higher IMAT was not significantly associated with higher 6-month mortality after adjustment for confounders. A 10 HU increase in SMD was associated with a 14% shorter hospital length of stay.CONCLUSIONS: Low skeletal muscle quality at ICU admission, as assessed by CT-derived skeletal muscle density, is independently associated with higher 6-month mortality in mechanically ventilated patients. Thus, muscle quality as well as muscle quantity are prognostic factors in the ICU.TRIAL REGISTRATION: Retrospectively registered (initial release on 06/23/2016) at ClinicalTrials.gov: NCT02817646 .
DOCUMENT