Abstract: The key challenge of managing Floating Production Storage and Offloading assets (FPSOs) for offshore hydrocarbon production lies in maximizing the economic value and productivity, while minimizing the Total Cost of Ownership and operational risk. This is a comprehensive task, considering the increasing demands of performance contracting, (down)time reduction, safety and sustainability while coping with high levels of phenomenological complexity and relatively low product maturity due to the limited amount of units deployed in varying operating conditions. Presently, design, construction and operational practices are largely influenced by high-cycle fatigue as a primary degradation parameter. Empirical (inspection) practices are deployed as the key instrument to identify and mitigate system anomalies and unanticipated defects, inherently a reactive measure. This paper describes a paradigm-shift from predominant singular methods into a more holistic and pro-active system approach to safeguard structural longevity. This is done through a short review of several synergetic Joint Industry Projects (JIP’s) from different angles of incidence on enhanced design and operations through coherent a-priori fatigue prediction and posteriori anomaly detection and -monitoring.
DOCUMENT
Europe faces significant challenges in maintaining its aging infrastructure due to extreme weather events, fluctuating groundwater levels, and rising sustainability demands. Ensuring the safety and longevity of infrastructure is a critical priority, especially for public organizations responsible for asset management. Digital technologies have the potential to facilitate the scaling and automation of infrastructure maintenance while enabling the development of a data-driven standardized inspection methodology. This extended abstract is the first phase of a study that examines current structural inspection methods and lifecycle monitoring activities of the Dutch public and private entities. The preliminary findings presented here indicate a preference for data-driven approaches, though challenges in data collection, processing, personnel resources and analysis remain. The future work will experiment integrating advanced tools, such as artificial intelligence supported visual inspection, on the existing inspection datasets of these authorities for quantifying their readiness levels to the fully automated digital inspections.
DOCUMENT
This paper outlines an investigation into the updating of fatigue reliability through inspection data by means of structural correlation. The proposed methodology is based on the random nature of fatigue fracture growth and the probability of damage detection and introduces a direct link between predicted crack size and inspection results. A distinct focus is applied on opportunities for utilizing inspection information for the updating of both inspected and uninspected (or uninspectable) locations.
DOCUMENT