Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
In manufacturing of organic electronics, inkjet printing as an alternative technique for depositing materials is becoming increasingly important. Aside to the ink formulations challenges, improving the resolution of the printed patterns is a major goal. In this study we will discuss a newly developed technique to selectively modify the substrate surface energy using plasma treatment as a means to achieve this goal. First, we look at the effects of the μPlasma treatment on the surface energy for a selection of plastic films. Second, we investigated the effects of the μPlasma treatment on the wetting behaviour of inkjet printed droplets to determine the resolution of the μPlasma printing technique. We found that the surface energy for all tested films increased significantly reaching a maximum after 3-5 repetitions. Subsequently the surface energy decreased in the following 8-10 days after treatment, finally stabilizing at a surface energy roughly halfway between the surface energy of the untreated film and the maximum obtained surface energy. When μPlasma printing lines, an improved wetting abillity of inkjet printed materials on the plasma treated areas was found. The minimal achieved μPlasma printed line was found to be 1 mm wide. For future application it is important to increase the resolution of the plasma print process. This is crucial for combining plasma treatment with inkjet print technology as a means to obtain higher print resolutions.
DOCUMENT
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.
DOCUMENT
The main challenge for the Dutch and European textile and clothing sector is to make a paradigm shift from labour intensive industry to knowledge based industry. This shift is essential for gaining a competitive edge and to develop innovative products and eco-friendly processes. A promising technology to achieve this is digital printing. This future oriented process is aimed to achieve high energy, water, and chemical savings and therefore a drastic reduction of waste. The technology breakthrough is based on a novel Eco-friendly flexible digital process. The basic components of Inkjet printers are hardware, software, inks and the substrate, which in this case is a textile.Inkjet processes can be divided in two main categories, image printing and functional printing. Image printing is already a mature technology and commercially available. The biggest advantages of inkjet printing over screen printing techniques is ease of operation, cost savings and most importantly ability to handle smaller volume (mass customisation). The functional printing is still in the research and development stage. It offers immense possibilities to bring various functional and nano-materials on textile surface on demand in a continuous process at atmospheric conditions and room temperature. Additionally functionality can be delivered at specific location on the textile with a possibility to apply more than one functionality either side by side or layer by layer. Inkjet processes could replace conventional high temperature and wet textile processes. Digital micro-disposal of fluids is expected to alter textile economics in terms of production speeds and on demand production.Nevertheless inkjet printing/finishing on textiles surfaces with different functional formulations is a major challenge. This is because of the close interaction between ink properties and chemistry, the piezo inkjets and the textile substrate. A typical process involves the development of stable jettable colloidal functional inks that will be delivered on well prepared textile substrate, followed by proper curing/fixation.The case we discuss in the manuscript is the development of a smart textile based heatable pair of trousers especially designed for people with disabilities. The inkjet printed textile samples were prepared and compared with conductive samples produced with well-established techniques such as weaving, knitting, nonwoven techniques and embroidering.
MULTIFILE
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia associated with significant morbidity and mortality and is expected to affect approximately 30 million North Americans and Europeans by 2050. AF is a persistent disease, caused by progressive, often age-related, derailment of proteostasis resulting in structural remodeling of the atrial cardiomyocytes. It has been widely acknowledged that the progressive nature of the disease hampers the effective functional conversion to sinus rhythm in patients and explains the limited effect of current drug therapies. Therefore, research is directed at preventing new-onset AF by limiting the development of substrates underlying AF promotion. Upstream therapy refers to the use of drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) and recurrence of the arrhythmia following (spontaneous) conversion and to prevent the progression of AF (secondary prevention). Recently, we observed that heat shock protein (HSP)-inducing drugs, such as geranylgeranylacetone, prevent derailment of proteostasis and remodeling of cardiomyocytes and thereby attenuate the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Also, correlative data from human studies were consistent with a protective role of HSPs in preventing the progression from paroxysmal AF to permanent AF and in the recurrence of AF. In this review, we discuss novel HSP-inducing compounds as emerging therapeutics for the primary and secondary prevention of AF. © 2012 Elsevier Inc.
DOCUMENT
geen samenvatting beschikbaar
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
A bioaugmentation approach was used to enhance the performance of anaerobic digestion (AD) using cow manure (CM) as the substrate in a continuous system. To obtain the desirable microbial culture for bioaugmentation, a biochemical methane potential test (BMP) was used to evaluate three commonly used inocula namely (1) municipal solid waste (MSW), (2) wastewater treatment plant (WWTP), and (3) cow manure digester (CMMD) for their hydrolytic capacity. The highest lignocellulose removal (56% for cellulose and 50% for hemicellulose) and the most profusion of cellulolytic bacteria were obtained when CM was inoculated with CMMD. CMMD was thus used as the seed inoculum in a continuously operated reactor (Ra) with the fiber fraction of CM as the substrate to further enrich cellulolytic microbes. After 100 days (HRT: 30 days), the Bacteria fraction mainly contained Ruminofilibacter, norank_o_SBR1031, Treponema, Acetivibrio. Surprisingly, the Archaea fraction contained 97% ‘cellulolytic archaea’ norank_c_Bathyarchaeia (Phylum Bathyarchaeota). This enriched consortium was used in the bioaugmentation experiment. A positive effect of bioaugmentation was verified, with a substantial daily methane yield (DMY) enhancement (24.3%) obtained in the bioaugmented reactor (Rb) (179 mL CH4/gVS/d) than that of the control reactor (Rc) (144 mL CH4/gVS/d) (P < 0.05). Meanwhile, the effluent of Rb enjoyed an improved cellulose reduction (14.7%) than that of Rc, whereas the amount of hemicellulose remained similar in both reactors' effluent. When bioaugmentation stopped, its influence on the hydrolysis and methanogenesis sustained, reflected by an improved DMY (160 mL CH4/gVS/d) and lower cellulose content (53 mg/g TS) in Rb than those in Rc (DMY 144 mL/CH4/gVS/d and cellulose content 63 mg/g TS, respectively). The increased DMY of the continuous reactor seeded with a specifically enriched consortium able to degrade the fiber fraction in CM shows the feasibility of applying bioaugmentation in AD of CM.
LINK
The results of this study indicate that whole body metabolic and cardiovascular responses to 140 min of either steady state or variable intensity exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment
DOCUMENT
This article gives information on an international ring trial of the epidermal-equivalent (EE) sensitizer potency assay.
MULTIFILE