Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
DOCUMENT
Over recent years, numbers of electric vehicles (EVs) have shown a strong growth and sales are projected to continue to grow. For facilitating charging possibilities for EVs typically two rollout strategies have been applied; demand-driven and strategic rollout. This study focuses on determining the differences in performance metrics of the two rollout strategies by first defining key performance metrics. Thereafter, the root causes of performance differences between the two rollout strategies are investigated. This study analyzes charging data of 1,007,137 transactions on 1742 different CPs by use of 53,850 unique charging cards. This research concludes that demand-driven CPs outperform strategic CPs on weekly energy transfer and connection duration, while strategic CPs outperform their demand-driven counterparts on charging time ratio. Regarding users facilitated, there is a significant change in performance after massive EV-uptake. The root cause analysis shows effects of EV uptake and user type composition on the differences in performance metrics. This research concludes with implications for policy makers regarding an optimal portfolio of rollout strategies.
DOCUMENT
By use of a literature review and an environmental scan four plausible future scenarios will be created, based on the research question: How could the future of backpack tourism look like in 2030, and how could tourism businesses anticipate on the changing demand. The scenarios, which allow one to ‘think out of the box’, will eventually be translated into recommendations towards the tourism sector and therefore can create a future proof company strategy.
DOCUMENT
Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
MULTIFILE
In this article a generic fault detection and diagnosis (FDD) method for demand controlled ventilation (DCV) systems is presented. By automated fault detection both indoor air quality (IAQ) and energy performance are strongly increased. This method is derived from a reference architecture based on a network with 3 generic types of faults (component, control and model faults) and 4 generic types of symptoms (balance, energy performance, operational state and additional symptoms). This 4S3F architecture, originally set up for energy performance diagnosis of thermal energy plants is applied on the control of IAQ by variable air volume (VAV) systems. The proposed method, using diagnosis Bayesian networks (DBNs), overcomes problems encountered in current FDD methods for VAV systems, problems which inhibits in practice their wide application. Unambiguous fault diagnosis stays difficult, most methods are very system specific, and finally, methods are implemented at a very late stage, while an implementation during the design of the HVAC system and its control is needed. The IAQ 4S3F method, which solves these problems, is demonstrated for a common VAV system with demand controlled ventilation in an office with the use of a whole year hourly historic Building Management System (BMS) data and showed it applicability successfully. Next to this, the influence of prior and conditional probabilities on the diagnosis is studied. Link to the formal publication via its DOI https://doi.org/10.1016/j.buildenv.2019.106632
DOCUMENT
The Internet is changing the way we organize work. It is shifting the requirement for what we call the ‘schedule push’ and the hierarchical organization that it implies, and therefore it is removing the type of control that is conventionally used to match resources to tasks, and customer demand to supplies and services. Organizational hierarchies have become too expensive to sustain, and in many cases their style of coordination is simply no longer necessary. The cost complexity of the industrial complex starts to outweigh the benefits and the Internet is making it redundant.
MULTIFILE
Instead of using a passive AC power grid for low power applications, this paper describes a smart plug for DC networks that is capable of providing the correct power to a device (up to 100W) and that allows for communication between different plugs and monitoring of energy consumption across the DC network using the Ethernet protocol in conjunction with a signal modulator to adapt the signals to the DC network. The ability to monitor consumption on a device-per-device basis allows for closer monitoring of in-house energy use and provides an easily scalable platform to monitor consumption at a macro level. In order to make this paper attractive for the consumer market and easily integrable with existing consumer devices, a generally compatible solution is needed. To meet these demands and to take advantage of the trend of charging consumer devices through USB, we opted for the recently adapted USB Power Delivery standard. This standard allows devices to communicate with the plug and demand a specific voltage and current needed for the device to operate. The purpose of this paper is to give the reader insight in the development of a proof of concept of the smart DC/DC power plug. 10.1109/DUE.2014.6827761
DOCUMENT
Companies in the Brainport region are often characterized as high mix low volume (HMLV) production environments. These companies are distinguished by a wide range of possible products (high product variety), which are produced in low volumes. These are often customer-specific products that are produced once or incidentally. Traditionally, these companies focus on efficient use of resources, where utilisation rate and cost coverage are relevant. The increasing customer demand in the region leads to pressure on production capacity. An initial intuitive response from these companies is to further increase the utilisation rate of machines. To keep costs manageable, the company tries to avoid investing in additional capacity. An undesirable side effect is increasing pressure on timeliness (delivery, such as lead times, delivery reliability, flexibility) and quality. The apparent contradiction between costs and timeliness in these HMLV production environments is a recurring issue in practice-oriented research conducted by Fontys Industrial Engineering and Management students. This results in the following research question: Which sub-aspects may be relevant to the performance regarding Quality, Delivery, and Cost (QDC) of an HMLV production environment?
DOCUMENT
Dit eindrapport behandelt het onderzoek van CDM@Airports, gericht op Collaborative Decision Making in de logistieke processen van luchtvrachtafhandeling op Nederlandse luchthavens. Dit project, met een looptijd van ruim twee jaar, is gestart op 8 november 2021 en geëindigd op 31 december 2023. HET PROJECT CDM@AIRPORTS OMVAT DRIE WERKPAKKETTEN: 1. Projectmanagement, dit betreft de algehele aansturing van het project incl. stuurgroep, werkgroep en stakeholdermanagement. 2. Onderzoeksactiviteiten, bestaande uit a) cross-chain-samenwerking, b) duurzaamheid en c) adoptie van digitale oplossingen voor datagedreven logistiek. 3. Management van een living lab, een ‘quadruple-helix-setting’ die fysieke en digitale leeromgevingen integreert voor onderwijs en multidisciplinair toegepast onderzoek.
MULTIFILE
Dit document geeft een overzicht van de bevindingen over het Factory-as-a service concept. Gedurende het SMITZH project heeft het lectoraat Smart Sustainable Manufacturing gezocht naar antwoorden op een aantal vragen: Welke initiatieven bestaan er, waar ondernemers elkaar helpen via het beschikbaar stellen en delen van productiecapaciteit? Wat zijn de randvoorwaarden om zo’n initiatief te laten slagen? Wat kan bijdragen om belemmeringen voor de toekomst weg te nemen? De voordelen zijn zeker aanwezig, maar obstakels ook. Met name dat laatste kan de voortgang en innovatief denken over de inrichting van flexibele en ‘Smart Manufacturing’ in de weg zitten. Het verhogen van de flexibiliteit om de maakindustrie concurrerender en veerkrachtiger te maken is een van de doelstellingen van het Smart Industry Programma, SMITZH en het lectoraat.
MULTIFILE