Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
DOCUMENT
The textile and clothing sector belongs to the world’s biggest economic activities. Producing textiles is highly energy-, water- and chemical-intensive and consequently the textile industry has a strong impact on environment and is regarded as the second greatest polluter of clean water. The European textile industry has taken significant steps taken in developing sustainable manufacturing processes and materials for example in water treatment and the development of biobased and recycled fibres. However, the large amount of harmful and toxic chemicals necessary, especially the synthetic colourants, i.e. the pigments and dyes used to colour the textile fibres and fabrics remains a serious concern. The limited range of alternative natural colourants that is available often fail the desired intensity and light stability and also are not provided at the affordable cost . The industrial partners and the branch organisations Modint and Contactgroep Textiel are actively searching for sustainable alternatives and have approached Avans to assist in the development of the colourants which led to the project Beauti-Fully Biobased Fibres project proposal. The objective of the Beauti-Fully Biobased Fibres project is to develop sustainable, renewable colourants with improved light fastness and colour intensity for colouration of (biobased) man-made textile fibres Avans University of Applied Science, Zuyd University of Applied Sciences, Wageningen University & Research, Maastricht University and representatives from the textile industry will actively collaborate in the project. Specific approaches have been identified which build on knowledge developed by the knowledge partners in earlier projects. These will now be used for designing sustainable, renewable colourants with the improved quality aspects of light fastness and intensity as required in the textile industry. The selected approaches include refining natural extracts, encapsulation and novel chemical modification of nano-particle surfaces with chromophores.
The demand for sustainable colourants is gaining significant recognition across many industries, the UN, governments, and also among consumers. As awareness grows, the urgent need to develop eco-friendly alternatives to traditional pigments and dyes, often criticized for their energy-intensive processes and environmental impact, becomes apparent. The RAAK-PRO project proposal "ChromoFlavo" addresses this need by exploring the biomanufacturing of Structural Colour (SC) in a novel way using Flavobacteria. SC features microscopically structured particles that interact with light in a similar way to peacock feathers, offering vivid, non-toxic colours while reducing energy use and reliance on renewable resources. Although Bacterial-Derived Structural Colours (BDSC) show great promise, they are still in early development, particularly regarding scalability and the preservation and formulation of colourants. To tackle these challenges, the RAAK-PRO proposal aims to advance this technology to meet market needs. The project’s initial focus is on architectural coatings and design, areas where aesthetics and sustainability are paramount, and where designers are often eager to adopt new technologies. By demonstrating BDSC's potential in these sectors, the project seeks to underscore its broader applicability in other sectors. The colourant industry, with its diverse applications, presents challenges to adopting innovative technologies. To overcome these, the project will develop a business roadmap that integrates designer input to strategically position and promote BDSC. This important activity is designed to promote future product development. This project brings together a consortium of academic institutions, biotech SMEs, industrial designers, and industry partners to enhance the durability and consistency of structural colours produced by bacteria. The goals include establishing cost-effective production methods and developing paints and coatings incorporating SC derivatives. Through innovation in sustainable colourants, the "ChromoFlavo" project aspires to drive a transformative shift in the colour industry, ultimately scaling BDSC technology to meet the growing demand for environmentally friendly solutions.
On a yearly basis 120 million kg of spent coffee ground (SCG) is disposed as waste. Two partners in the project have the intension to refine the valuable compounds from this coffee residue. One of these compounds is the group of melanoidins. It is proven that these natural polymers, with polyphenols incorporated, can be applied as colourant to textiles. These colourant compounds can be extracted from the SCG. In this project an industrial feasible dye recipe for SCG extract to cotton will be developed. This twostep dye method consists of a mordanting step and a colour uptake step. Both will be optimised to colour intensity and light and wash fastness. Parameters as cycle time and energy and water consumption, will be take into account to make the dye recipe applicable for industrial standards. Chemical analysis of mordant compounds (tannins) and colourants (polyphenols) will be carried out to quantify and qualify the uptake by cotton. With the results of this project, the partners will be able to support their customers of the SCG extract with a scientific based advise about the application as a textile dye to ensure a solid market acceptance of SCG extract. With the SCG extract as a professional biobased colorant in the market, companies in textile industry will have a wider choice in using environmental friendly products. At the end, this will lead to complete biodegradable products for consumers.