Following the completion of the 1st phase of the RAAK PRO project Aviation Safety Metrics, during which the researchers mapped the current practice in safety metrics and explored the validity of monotonic relationships of SMS, activity and demographic metrics with safety outcomes, this report presents the concept for the design of new metrics. Those metrics will be based on the hypothesis that the greater the gap between Work-As-Imagined and Work-As-Done the lower the safety performance, and they correspond to a set of references from academic literature, challenges in professional practice,depiction of system structure, and consideration of “soft” organizational aspects. Along with the design of the alternative metrics, this report explains the respective concepts referred in the literature but excluded from the current research, as well as the process and possible difficulties in ensuring various validity types of the new metrics.
Quality improvements (QIs) in dynamic and complex health care contexts require resilience and take variability into account in quality improvement. The Functional Resonance Analysis Method (FRAM) helps us understand resilience and gain insight into (un)desirable variability in the complex system of daily practice. We explored how using FRAM in the Deming cycle of a QI project can help professionals and researchers learn from, reflect upon, and improve complex processes. We used FRAM in a Dutch hospital to study a QI: Critical Care Outreach Service (CCOS).
MULTIFILE
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.