Burgers weten weinig over hoe zij hun online veiligheid kunnen vergroten en bij hen ontbreekt vaak het gevoel van urgentie om daadwerkelijk maatregelen te nemen. De gemeente kan burgers ondersteunen met informatiepunten en extra ondersteuning van kwetsbare groepen. Kenniscentrum Cybersecurity van de Haagse Hogeschool deed onderzoek bij twee gemeenten.
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
Dit artikel legt het belang uit van goede uitleg van kunstmatige intelligentie. Rechten van individuen zullen door ontwerpers van systemen van te voren moeten worden ingebouwd. AI wordt beschouwd als een 'sleuteltechnologie' die de wereld net zo ingrijpend gaat veranderen als de industriele revolutie. Binnen de stroming XAI wordt onderzoek gedaan naar interpretatie van werking van AI.
Bedrijven, waaronder telecomproviders, vertrouwen steeds meer op complexe AI-systemen. Het gebrek aan interpreteerbaarheid dat zulke systemen vaak introduceren zorgt voor veel uitdagingen om het onderliggende besluitvormingsproces te begrijpen. Vertrouwen in AI-systemen is belangrijk omdat het bijdraagt aan acceptatie en adoptie onder gebruikers. Het vakgebied Explainable AI (XAI) speelt hierbij een cruciale rol door transparantie en uitleg aan gebruikers te bieden voor de beslissingen en werking van zulke systemen.Doel Bij AI-systemen zijn gewoonlijk verschillende stakeholders betrokken, die elk een unieke rol hebben met betrekking tot deze systemen. Als gevolg hiervan varieert de behoefte voor uitleg afhankelijk van wie het systeem gebruikt. Het primaire doel van dit onderzoek is het genereren en evalueren van op stakeholder toegesneden uitleg voor use cases in de telecomindustrie. Door best practices te identificeren, nieuwe explainability tools te ontwikkelen en deze toe te passen in verschillende use cases, is het doel om waardevolle inzichten op te doen. Resultaten Resultaten omvatten het identificeren van de huidige best practices voor het genereren van betekenisvolle uitleg en het ontwikkelen van op maat gemaakte uitleg voor belanghebbenden voor telecom use-cases. Looptijd 01 september 2023 - 30 augustus 2027 Aanpak Het onderzoek begint met een literatuurstudie, gevolgd door de identificatie van mogelijke use-cases en het in kaart brengen van de behoeften van stakeholders. Vervolgens zullen prototypes worden ontwikkeld en hun vermogen om betekenisvolle uitleg te geven, zal worden geëvalueerd.
Uitlegbaarheid van de uitkomsten en werking van artificiële intelligentie (AI) toepassingen is een belangrijke voorwaarde om vertrouwen van consumenten en maatschappij in AI-toepassingen te borgen, zeker in de financiële sector. In dit project ontwikkelen we hulpmiddelen om uitkomsten van complexe AI-toepassingen om te zetten naar een begrijpelijke uitleg voor medewerkers zoals klantacceptanten en schadebehandelaren. Dat is van belang omdat deze medewerkers met de klant communiceren en in staat moeten zijn om die een uitleg te geven bijvoorbeeld als de schadeclaim van een klant wordt afgewezen, omdat die door een AI-toepassing als frauduleus is bestempeld. Doel Het project heeft tot doel een concrete bijdrage te leveren aan de implementatie van effectieve en mensgerichte AI-toepassingen door hulpmiddelen te ontwikkelen die interne gebruikers van die AI-toepassingen meer en beter inzicht geven in de werking en uitkomsten ervan. Resultaten Handreikingen (in de vorm van tools en instrumenten) die richting geven en ondersteunen bij het genereren, communiceren en evalueren van uitleg. De primaire doelgroep van de handreikingen zijn ontwerpers en ontwikkelaars van AI- en XAI-toepassingen. Looptijd 31 januari 2023 - 31 maart 2025 Aanpak Het project volgt een design science aanpak waarbij op basis van behoeften uit de praktijk en al beschikbare kennis artefacten worden ontwikkeld. De artefacten in dit project zijn de handreikingen die bij resultaten zijn beschreven. Subsidieverstrekker FIN-X is een project dat subsidie ontvangt van het Nationaal Regieorgaan Praktijkgericht Onderzoek SIA in het kader van de RAAK-mkb regeling september 2022 met als dossiernummer RAAK.MKB17.003
Toepassingen gebaseerd op artificiële intelligentie (AI) worden steeds vaker ingezet voor het maken van keuzes en besluiten. Deze toepassingen worden echter ook steeds complexer. Het is in sommige gevallen niet of moeilijk na te gaan hoe een algoritme tot een besluit is gekomen. Wat de AI doet is als het ware ondoorzichtig. Dit geldt ook in de financiële sector, terwijl juist in deze sector vertrouwen een grote rol speelt. Daarom is het belangrijk dat bijvoorbeeld klanten en toezichthouders in de financiële sector een passende uitleg krijgen hoe een op AI gebaseerd besluit tot stand gekomen is. Bijvoorbeeld waarom een lening niet is toegekend of waarom een transactie is aangemerkt als mogelijk frauduleus. Uitlegbare AI (in het Engels Explainable AI ofwel XAI) is het onderzoeksveld dat streeft naar het inzichtelijk maken van ondoorzichtige AI. Dat start volgens ons met het in beeld krijgen wat voor soort uitleg in welke situatie voor welk type stakeholder vereist is bij toepassing van AI. Verder is het de vraag welke vormen van AI zich goed lenen voor uitleg, en welke XAI-oplossing het beste geschikt is om een uitleg te kunnen genereren. Wij hebben XAI gedefinieerd als een set van methoden en technieken om een stakeholder een passende uitleg te kunnen geven over het functioneren en/of de resultaten van een AI-oplossing op een zodanig manier dat die uitleg begrijpelijk is voor en tegemoet komt aan de zorgen van die stakeholder. Doel Het doel van het project is om in samenwerking met organisaties in de financiële sector praktijkgericht onderzoek te doen naar uitlegbaarheid en daarbij de randvoorwaarden van uitlegbaarheid in beeld te brengen. Dit bestaat enerzijds uit het helder krijgen van de stakeholders en welke uitleg zij verwachten en anderzijds hoe die uitleg het beste tot stand kan worden gebracht. Organisaties waarmee wordt samengewerkt zijn onder andere financiële dienstverleners en toezichthouders. Resultaten Raamwerk voor uitlegbare AI met type stakeholders en soorten uitleg voor de financiële sector. Dit raamwerk is uiteengezet in het whitepaper: XAI in the financial sector 'a conceptual framework for explainable AI'. De Hogeschool Utrecht heeft meegewerkt aan een verkennend onderzoek naar uitlegbaarheid bij AI met DNB, de AFM, de Nederlandse Vereniging van Banken en drie Nederlandse grootbanken. In dit onderzoek is het raamwerk van de Hogeschool Utrecht toegepast. Bekijk de resultaten van het onderzoek. Op basis van dit onderzoek is een paper ingediend en geaccepteerd op de 33e Benelux Conference on Artificial Intelligence. De Hogeschool Utrecht heeft samen met consortiumpartners Floryn, Researchable en de Volksbank in een eenjarig project onderzoek gedaan naar aspecten die een rol spelen bij het implementeren van explainable AI. Als resultaat van dit onderzoek is een checklist gepubliceerd en een whitepaper waarin deze checklist uitgebreid wordt toegelicht. Daarnaast is een paper ingediend bij de HHAI2023 conferentie. Meer informatie over dit project is op deze pagina te vinden. Een subsidieaanvraag voor een tweejarig RAAK-mkb project is gehonoreerd. Dit project, FIN-X geheten, heeft tot doel hulpmiddelen te ontwikkelen die interne gebruikers van AI-toepassingen meer en beter inzicht geven in de werking en uitkomsten ervan. Meer informatie over dit project is op de volgende pagina te vinden. In samenwerking met de Copenhagen Business School en het Verbond van Verzekeraars heeft de Hogeschool Utrecht in 2023 onderzoek gedaan naar de rol van explainable AI bij fraudedetectie van schadeclaims bij verzekeraars. De resultaten van het onderzoek zijn vastgelegd in dit Whitepaper. De belangrijkste conclusie uit het onderzoek is dat de implementatie van AI bij fraudedetectie een businesstransformatie is met veel ethische en organisatorische overwegingen. De uitlegbaarheid van het AI-systeem wordt als cruciaal gezien, zowel vanuit ethisch oogpunt (als onderdeel van het transparantiebeginsel), als vanuit praktisch oogpunt (als middel om vertrouwen en acceptatie te winnen van interne belanghebbenden, en voor een goede samenwerking tussen mens en machine). De praktische implementatie van explainable AI is nog steeds een punt van discussie en onderzoek in de sector. Looptijd 01 juni 2020 - 31 maart 2025 Aanpak Vanuit de Hogeschool Utrecht streven we naar praktijkgericht onderzoek en steken daarom het onderzoek naar XAI in op het niveau van use-cases. We willen per use-case in kaart brengen welke stakeholders behoefte hebben aan welke uitleg. Door deze aanpak kunnen we gericht vanuit de praktijk de link met de literatuur leggen en nieuwe inzichten rapporteren. Een voorbeeld van een use-case die wordt onderzocht is kredietverlening aan consumenten (consumptief krediet). Uiteindelijk werken we toe naar een raamwerk met bijbehorende principes en richtlijnen voor XAI toegespitst op de gehele financiële sector.” veranderen in: “Voorbeelden van use-cases die worden onderzocht zijn kredietverlening, klantacceptatie en fraudedetectie bij claimafhandeling. Uiteindelijk werken we toe naar tools voor XAI toegespitst op de gehele financiële sector. Financiële dienstverleners of andere partijen in het financiële ecosysteem die geïnteresseerd zijn in samenwerking met ons worden van harte uitgenodigd contact met ons op te nemen. Download het whitepaper whitepaper: XAI in the financial sector Gerelateerd project Dit project is gekoppeld aan het KIEM project Uitlegbare AI in de Financiële Sector, dat de opzet kan zijn voor een aanvraag voor vervolgonderzoek om uiteindelijk te komen tot een aanpak en hulpmiddelen voor uitlegbare AI.