Background: Most older adults prefer to age in place, and supporting older adults to remain in their own homes and communities is also favored by policy makers. Technology can play a role in staying independent, active and healthy. However, the use of technology varies considerably among older adults. Previous research indicates that current models of technology acceptance are missing essential predictors specific to community-dwelling older adults. Furthermore, in situ research within the specific context of aging in place is scarce, while this type of research is needed to better understand how and why community-dwelling older adults are using technology. Objective: To explore which factors influence the level of use of various types of technology by older adults who are aging in place and to describe these factors in a comprehensive model. Methods: A qualitative explorative field study was set up, involving home visits to 53 community-dwelling older adults, aged 68-95, living in the Netherlands. Purposive sampling was used to include participants with different health statuses, living arrangements, and levels of technology experience. During each home visit: (1) background information on the participants' chronic conditions, major life events, frailty, cognitive functioning, subjective health, ownership and use of technology was gathered, and (2) a semistructured interview was conducted regarding reasons for the level of use of technology. The study was designed to include various types of technology that could support activities of daily living, personal health or safety, mobility, communication, physical activity, personal development, and leisure activities. Thematic analysis was employed to analyze interview transcripts. Results: The level of technology use in the context of aging in place is influenced by six major themes: challenges in the domain of independent living; behavioral options; personal thoughts on technology use; influence of the social network; influence of organizations, and the role of the physical environment. Conclusion: Older adults' perceptions and use of technology are embedded in their personal, social, and physical context. Awareness of these psychological and contextual factors is needed in order to facilitate aging in place through the use of technology. A conceptual model covering these factors is presented.
LINK
The aim of the current study was to examine the effectiveness of a school-centered multicomponent PA intervention, called ‘Active Living’, on children's daily PA levels. A quasi-experimental design was used including 9 intervention schools and 9 matched control schools located in the Netherlands. The baseline measurement took place between March–June 2013, and follow-up measurements were conducted 12 months afterwards. Accelerometer (ActiGraph, GT3X +) data of 520 children aged 8–11 years were collected and supplemented with demographics and weather conditions data. Implementation magnitude of the interventions was measured by keeping logbooks on the number of implemented physical environmental interventions (PEIs) and social environmental interventions (SEIs). Multilevel multivariate linear regression analyses were used to study changes in sedentary behavior (SB), light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) between baseline and follow-up. Finally, effect sizes (ESs) were calculated using Cohen's d. No pooled effects on PA and SB were found between children exposed and not exposed to Active Living after 12 months. However, children attending Active Living schools that implemented larger numbers of both PEIs and SEIs engaged in 15 more minutes of LPA per weekday at follow-up than children in the control condition (ES = 0.41; p < .05). Moreover, children attending these schools spent less time in SB at follow-up (ES = 0.33), although this effect was non-significant. No significant effects were found on MVPA. A school-centered multicomponent PA intervention holds the potential to activate children, but a comprehensive set of intervention elements with a sufficient magnitude is necessary to achieve at least moderate effect sizes.
MULTIFILE
Active transport to school is associated with higher levels of physical activity in children. Promotion of active transport has therefore gained attention as a potential target to increase children’s physical activity levels. Recent studies have recognized that the distance between home and school is an important predictor for active travel among children. These studies did not yet use the promising global positioning system (GPS) methods to objectively assess active transport. This study aims to explore active transport to school in relation to the distance between home and school among a sample of Dutch elementary school children, using GPS. Seventy-nine children, aged 6-11 years, were recruited in six schools that were located in five cities in the Netherlands. All children were asked to wear a GPS receiver for one week. All measurements were conducted between December 2008 and April 2009. Based on GPS recordings, the distance of the trips between home and school were calculated. In addition, the mode of transport (i.e., walking, cycling, motorized transport) was determined using the average and maximum speed of the GPS tracks. Then, proportion of walking and cycling trips to school was determined in relation to the distance between home and school. Out of all school trips that were recorded (n = 812), 79.2% were classified as active transport. On average, active commuting trips were of a distance of 422 meters with an average speed of 5.2 km/hour. The proportion of walking trips declined significantly at increased school trip distance, whereas the proportion of cycling trips (β = 1.23, p < 0.01) and motorized transport (β = 3.61, p < 0.01) increased. Almost all GPS tracks less than 300 meters were actively commuted, while of the tracks above 900 meters, more than half was passively commuted. In the current research setting, active transport between home and school was the most frequently used mode of travel. Increasing distance seems to be associated with higher levels of passive transport. These results are relevant for those involved in decisions on where to site schools and residences, as it may affect healthy behavior among children. https://doi.org/10.1186/1471-2458-14-227 LinkedIn: https://www.linkedin.com/in/sanned/
MULTIFILE
Developing and realizing an innovative concept for the Active Aging campus in two years, where students, teachers, companies, residents of surrounding Campus neighborhoods will be invited to do exercise, sports, play, meet and participate. This includes, on the one hand, providing input with regard to a mobility-friendly design from an infrastructural perspective and, on the other hand, organizing activities that contribute to Healthy Aeging of the Zernike site and the city of Groningen. It is not only about having an Active Aging campus with an iconic image, but also about the process. In the process of realization, students, teachers, researchers, companies and residents from surrounding districts will be explicitly involved. This includes hardware (physical environment / infrastructure), software (social environment) and orgware (interaction between the two).
De markt vraagt om steeds meer productvariëteit. Veel bedrijven realiseren productvariëteit nu met veel klant-specifiek engineeringswerk (Engineer-to-Order/EtO). Dit zet druk op alle afdelingen in het bedrijf zoals sales, engineering, productie en service. Een uitdagende manier voor deze bedrijven, om beter met het spanningsveld tussen externe en interne eisen om te gaan, is het ontwikkelen van meer configureerbare producten (lego principe}. Hiervoor is een modulaire opbouw van het product nodig waarin verschillende productonderdelen gestandaardiseerd zijn en gebruikt kunnen worden in verschillende eindproducten. Zo kan, met minder engineeringsactiviteiten, een product geconfigureerd worden (Configure-to-Order/CtO) en de klant productvariëteit worden geboden zonder alle interne druk. Voor diverse bedrijven vormen ook de mogelijkheden van Industry 4.0 en sustainabilty ambities belangrijke drivers in hun streven naar meer CtO. Het implementeren van CtO is echter niet eenvoudig. Het vraagt om aanzienlijke capaciteit, kennis en kunde op het gebied van productontwikkeling, procesontwikkeling en het veranderproces. Betrokkenheid van medewerkers uit alle belangrijke afdelingen (verkoop, engineering, productie, service etc.) is een vereiste. Mkb-bedrijven worstelen hiermee en hebben behoefte aan goede tools en technieken, zowel inhoudelijk, over de ontwikkeling van de productarchitectuur en de impact hiervan op de bedrijfsprocessen, als veranderkundig, hoe deze transitie tot stand te brengen. In dit Sia RAAK-mkb onderzoek willen wij samen met productie mkb-bedrijven, kennisinstellingen en brancheorganisaties een integrale aanpak ontwikkelen om CtO op een goede manier te implementeren. De deelnemende mkb-bedrijven hebben de duidelijke wens om dit de komende jaren te doen. Voor de specifieke casussen zullen met casestudies en interventieonderzoek aanpakken ontwikkeld worden. Studentprojecten zullen ondersteuning geven aan de verschillende interventies. Vervolgens zal systematisch case-vergelijkend onderzoek worden uitgevoerd om inzicht te krijgen in wat in welke situatie werkt. Op basis van het case-vergelijkend onderzoek worden tools en technieken ontwikkeld die enerzijds generiek zijn en anderzijds kunnen worden aangepast aan specifieke bedrijfssituaties.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.