Horizontal axis wind turbines (HAWTs) experience three-dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highlyunsteady three-dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall onthe load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.
Dynamic inflow effects occur due to the rapid change of the rotor loading underconditions such as fast pitch steps. The paper presents a setup suitable for the investigation ofthose effects for non-axisymmetric rotor conditions, namely individual pitch steps. Furthermore, insights into the relevant phenomena are gathered. An individual pitch control capable model wind turbine is set up in a wind tunnel in order to conduct measurement under controllable conditions. During the execution of the collective and individual pitch steps, the loads and the operational parameters are recorded by the onboard sensors. Meanwhile, simulations engineering aeroelastic codes are run in order to evaluate their accuracy for predicting the relevant phenomena. Results show distinct behaviour of the rotor loads during an individual pitch step, which differs from the loads under collective steps. The free vortex wake simulations are able to predict the turbines’ response satisfactory while the blade element momentum tools show deviations from the measurements. The findings serve as a basis for discussion and future work.
tract Micro wind turbines can be structurally integrated on top of the solid base of noise barriers near highways. A number of performance factors were assessed with holistic experiments in wind tunnel and in the field. The wind turbines underperformed when exposed in yawed flow conditions. The theoretical cosθ theories for yaw misalignment did not always predict power correctly. Inverter losses turned out to be crucial especially in standby mode. Combination of standby losses with yawed flow losses and low wind speed regime may even result in a net power consuming turbine. The micro wind turbine control system for maintaining optimal power production underperformed in the field when comparing tip speed ratios and performance coefficients with the values recorded in the wind tunnel. The turbine was idling between 20%–30% of time as it was assessed for sites with annual average wind speeds of three to five meters per second without any power production. Finally, the field test analysis showed that inadequate yaw response could potentially lead to 18% of the losses, the inverter related losses to 8%, and control related losses to 33%. The totalized loss led to a 48% efficiency drop when compared with the ideal power production measured before the inverter. Micro wind turbine’s performance has room for optimization for application in turbulent wind conditions on top of noise barriers. https://doi.org/10.3390/en14051288
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.
To meet the European Green Deal, new CO2 emission standards for Heavy-Duty-Vehicles (HDV) have been set. The amended Regulation EU-2019/1242 has a wider scope, covering not only lorries but also trailers. From 2030 on (semi-)trailers must reduce their emissions by 10%, even though trailers generally do not emit any CO2-emissions. But how can a trailer save CO2? To calculate emissions, the European Commission has developed VECTO, the Vehicle Energy Consumption Calculation TOol. It is a standardized framework designed to determine fuel consumption and CO2-emissions of HDVs. Analysis show that the two main focus points for CO2 reduction, based on VECTO, are weight reduction and improved aerodynamics. However, equipping trailers with aerodynamic devices or making them lighter isn’t straightforward. Trailers lead a rough life and the industry is adapted to the current trailer designs. Lightweight constructions might harm the lifetime of a trailer and trailers with protruding aerodynamic parts won’t fit on a train anymore. Besides, both solutions have a major influence on the vehicle (roll-over) stability and therefore safety. It is not that evident for a trailer manufacturer to design a (new) trailer that 1) fulfills the CO2 regulations, 2) complies with the constructional requirements and 3) remains safe and stable. This 3-step-approach is really missing for trailer manufacturers, and this is endorsed by Burgers Carrosserie: “How can we validate (upfront) that the trailer is still as “strong” and “safe” if we apply the weight reduction that shows sufficient CO2 saving in VECTO?”. The answer was simple, it isn’t. It is the aim of Trenergy to develop this 3-step approach with complementary simulation tools, where trailer manufacturers can validate their design(s) for CO2 Savings, Construction and Safety. It is intended to make the developed models/tools open source for the Logistic Industry.