Due to a lack of transparency in both algorithm and validation methodology, it is diffcult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (+/- 10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
DOCUMENT
People tend to be hesitant toward algorithmic tools, and this aversion potentially affects how innovations in artificial intelligence (AI) are effectively implemented. Explanatory mechanisms for aversion are based on individual or structural issues but often lack reflection on real-world contexts. Our study addresses this gap through a mixed-method approach, analyzing seven cases of AI deployment and their public reception on social media and in news articles. Using the Contextual Integrity framework, we argue that most often it is not the AI technology that is perceived as problematic, but that processes related to transparency, consent, and lack of influence by individuals raise aversion. Future research into aversion should acknowledge that technologies cannot be extricated from their contexts if they aim to understand public perceptions of AI innovation.
LINK
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
The Nutri-Score front-of-pack label, which classifies the nutritional quality of products in one of 5 classes (A to E), is one of the main candidates for standardized front-of-pack labeling in the EU. The algorithm underpinning the Nutri-Score label is derived from the Food Standard Agency (FSA) nutrient profile model, originally a binary model developed to regulate the marketing of foods to children in the UK. This review describes the development and validation process of the Nutri-Score algorithm. While the Nutri-Score label is one of the most studied front-of-pack labels in the EU, its validity and applicability in the European context is still undetermined. For several European countries, content validity (i.e., ability to rank foods according to healthfulness) has been evaluated. Studies showed Nutri-Score's ability to classify foods across the board of the total food supply, but did not show the actual healthfulness of products within different classes. Convergent validity (i.e., ability to categorize products in a similar way as other systems such as dietary guidelines) was assessed with the French dietary guidelines; further adaptations of the Nutri-Score algorithm seem needed to ensure alignment with food-based dietary guidelines across the EU. Predictive validity (i.e., ability to predict disease risk when applied to population dietary data) could be re-assessed after adaptations are made to the algorithm. Currently, seven countries have implemented or aim to implement Nutri-Score. These countries appointed an international scientific committee to evaluate Nutri-Score, its underlying algorithm and its applicability in a European context. With this review, we hope to contribute to the scientific and political discussions with respect to nutrition labeling in the EU.
DOCUMENT
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV1, dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes.
DOCUMENT
The CANDECOMP algorithm for the PARAFAC analysis of n × m × p three-way arrays is adapted to handle arrays in which n > rnp more efficiently. For such arrays, the adapted algorithm needs less memory space to store the data during the iterations, and uses less com- putation time than the original CANDECOMP algorithm. The size of the arrays that can be handled by the new algorithm is in no way limited by the number of observation units (n) in the data.
DOCUMENT
This paper presents a case study where a model predictive control (MPC) logic is developed for energy flexible operation of a space heating system in an educational building. A Long Short-Term Memory Neural Network (LSTM) surrogate model is trained on the output of an EnergyPlus building simulation model. This LSTM model is used within an MPC framework where a genetic algorithm is used to optimize setpoint sequences. The EnergyPlus model is used to validate the performance of the control logic. The MPC approach leads to a substantial reduction in energy consumption (7%) and energy costs (13%) with improved comfort performance. Additional energy costs savings are possible (7–16%) if a sacrifice in indoor thermal comfort is accepted. The presented method is useful for developing MPC systems in the design stages where measured data is typically not available. Additionally, this study illustrates that LSTM models are promising for MPC for buildings.
DOCUMENT
The aim of this study was to develop and validate an algorithm that can identify the type, frequency, and duration of activities common to intensive care (IC) patients. Ten healthy participants wore two accelerometers on their chest and leg while performing 14 activities clustered into four protocols (i.e., natural, strict, healthcare provider, and bed cycling). A video served as the reference standard, with two raters classifying the type and duration of all activities. This classification was reliable as intraclass correlations were all above 0.76 except for walking in the healthcare provider protocol, (0.29). The data of four participants were used to develop and optimize the algorithm by adjusting body-segment angles and rest-activity-threshold values based on percentage agreement (%Agr) with the reference. The validity of the algorithm was subsequently assessed using the data from the remaining six participants. %Agr of the algorithm versus the reference standard regarding lying, sitting activities, and transitions was 95%, 74%, and 80%, respectively, for all protocols except transitions with the help of a healthcare provider, which was 14-18%. For bed cycling, %Agr was 57-76%. This study demonstrated that the developed algorithm is suitable for identifying and quantifying activities common for intensive care patients. Knowledge on the (in)activity of these patients and their impact will optimize mobilization.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift
DOCUMENT
BACKGROUND: We recently developed a model of stratified exercise therapy, consisting of (i) a stratification algorithm allocating patients with knee osteoarthritis (OA) into one of the three subgroups ('high muscle strength subgroup' representing a post-traumatic phenotype, 'low muscle strength subgroup' representing an age-induced phenotype, and 'obesity subgroup' representing a metabolic phenotype) and (ii) subgroup-specific exercise therapy. In the present study, we aimed to test the construct validity of this algorithm.METHODS: Data from five studies (four exercise therapy trial cohorts and one cross-sectional cohort) were used to test the construct validity of our algorithm by 63 a priori formulated hypotheses regarding three research questions: (i) are the proportions of patients in each subgroup similar across cohorts? (15 hypotheses); (ii) are the characteristics of each of the subgroups in line with their proposed underlying phenotypes? (30 hypotheses); (iii) are the effects of usual exercise therapy in the 3 subgroups in line with the proposed effect sizes? (18 hypotheses).RESULTS: Baseline data from a total of 1211 patients with knee OA were analyzed for the first and second research question, and follow-up data from 584 patients who were part of an exercise therapy arm within a trial for the third research question. In total, the vast majority (73%) of the hypotheses were confirmed. Regarding our first research question, we found similar proportions in each of the three subgroups across cohorts, especially for three cohorts. Regarding our second research question, subgroup characteristics were almost completely in line with the proposed underlying phenotypes. Regarding our third research question, usual exercise therapy resulted in similar, medium to large effect sizes for knee pain and physical function for all three subgroups.CONCLUSION: We found mixed results regarding the construct validity of our stratification algorithm. On the one hand, it is a valid instrument to consistently allocate patients into subgroups that aligned our hypotheses. On the other hand, in contrast to our hypotheses, subgroups did not differ substantially in effects of usual exercise therapy. An ongoing trial will assess whether this algorithm accompanied by subgroup-specific exercise therapy improves clinical and economic outcomes.
MULTIFILE