The adoption of electric autonomous vehicles (EAVs) is set to revolutionize airport ground operations. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, evolving working conditions, and the growing impact of digitalization [1]. The traditional business model, in which manufacturers sell vehicles to operators (ground handlers), may no longer be relevant. The increasing complexity and advancement of EAVs will drive up costs, making the ownership model less appealing and shifting the focus from product-oriented to service-oriented models. This paper aims to provide a conceptual framework for potential business models for the implementation of EAVs in airport airside operations.
DOCUMENT
This article delves into the acceptance of autonomous driving within society and its implications for the automotive insurance sector. The research encompasses two different studies conducted with meticulous analysis. The first study involves over 600 participants involved with the automotive industry who have not yet had the opportunity to experience autonomous driving technology. It primarily centers on the adaptation of insurance products to align with the imminent implementation of this technology. The second study is directed at individuals who have had the opportunity to test an autonomous driving platform first-hand. Specifically, it examines users’ experiences after conducting test drives on public roads using an autonomous research platform jointly developed by MAPFRE, Universidad Carlos III de Madrid, and Universidad Politécnica de Madrid. The study conducted demonstrates that the user acceptance of autonomous driving technology significantly increases after firsthand experience with a real autonomous car. This finding underscores the importance of bringing autonomous driving technology closer to end-users in order to improve societal perception. Furthermore, the results provide valuable insights for industry stakeholders seeking to navigate the market as autonomous driving technology slowly becomes an integral part of commercial vehicles. The findings reveal that a substantial majority (96% of the surveyed individuals) believe that autonomous vehicles will still require insurance. Additionally, 90% of respondents express the opinion that policies for autonomous vehicles should be as affordable or even cheaper than those for traditional vehicles. This suggests that people may not be fully aware of the significant costs associated with the systems enabling autonomous driving when considering their insurance needs, which puts the spotlight back on the importance of bringing this technology closer to the general public.
DOCUMENT
This research examines the impact of transitioning to an autonomous operation on the airside of Schiphol airport, with a specific focus on emissions that affect both the environment and the staff working within airport premises. This study will explore current emissions from vehicles on Schiphol's airside, assessing their environmental impact and identifying harmful emissions. It will evaluate potential solutions, notably the role of electric vehicles, comparing this to the status quo before mapping the transition to an autonomous airside and its environmental consequences. A significant focus will be on the implications for staff working in these conditions. Additionally, it will review relevant laws and regulations to propose improvements, aiming to enhance Schiphol's environmental footprint. Conducted by Bright Sky for Schiphol Airport, this research aims to address overlooked harmful substances at the airport, seeking prompt solutions. Utilized by Schiphol, the findings will shed light on the necessity for innovation towards electric and autonomous vehicles, underlining the urgency for environmental improvements and technological advancements to tackle pollution issues effectively.
MULTIFILE
This research reviews the current literature on the impact of Artificial Intelligence (AI) in the operation of autonomous Unmanned Aerial Vehicles (UAVs). This paper examines three key aspects in developing the future of Unmanned Aircraft Systems (UAS) and UAV operations: (i) design, (ii) human factors, and (iii) operation process. The use of widely accepted frameworks such as the "Human Factors Analysis and Classification System (HFACS)" and "Observe– Orient–Decide–Act (OODA)" loops are discussed. The comprehensive review of this research found that as autonomy increases, operator cognitive workload decreases and situation awareness improves, but also found a corresponding decline in operator vigilance and an increase in trust in the AI system. These results provide valuable insights and opportunities for improving the safety and efficiency of autonomous UAVs in the future and suggest the need to include human factors in the development process.
DOCUMENT
Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
Green Sustainable Airport (GSA), an Interreg IVB project that is part of the North Sea Region Program, is an initiative of Groningen Airport Eelde (GAE). One of the goals of the GSA project is: The development and testing of sustainable and innovative applications that contribute to a more sustainable exploitation and increased accessibility of all partner airports. Currently a lot of research in the field of autonomous vehicles is carried out globally. In this research, named the “Flying Carpet”, the feasibility of using autonomous vehicles for passenger transfer between a future P+R facility at Glimmen and Groningen Airport Eelde is examined.Feasibility is researched on a technical, juridical and economic level. Implementing the proposed connection seems juridically feasible. -The juridical feasibility cannot be guaranteed, because it is a new situation whereby involved parties need to present a definitive answer, which at this stage is not possible. -Realizing the proposed concept has been indicated by the involved companies to be technically feasible, given that additional (existing) technologies will still need to be implemented. From a financial point of view, implementing an AGV connection is not recommendable. -The investment costs per transported passenger will be high, mainly because the transfer demand throughout a given day only has a few, if not just one, peak during arrival or departure of a flight. Therefore, choosing the AGV connection option should not be based on a financial point of view, but instead on gaining non-tangible assets in favour of GSA and GAE.
DOCUMENT
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE
The present invention refers to an autonomous road transport system based on autonomous vehicles operating similarly to trains on railways. In this system, a regular road vehicle, such as a car, bus or truck, can be properly equipped with sensors and computers to drive itself, guided by virtual tracks from one station to another. A virtual railroad is built from a set of stations connected by virtual rails. Virtual rails can be any type of technique or equipment capable of guiding the vehicle through the center of the road autonomously, such as advanced mapping and location techniques. The stations serve as a starting and stopping point for vehicles.
DOCUMENT
DOCUMENT
The rapidly evolving aviation environment, driven by the Fourth Industrial Revolution, encompasses smart operations, communication technology, and automation. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, working conditions, and digitalization (ACI World, 2019). This paper explores high-level governance strategies, a benchmarking study, that facilitates this transition. It aims to identify the key characteristics and features of the benchmarking study applicable to the development of autonomous airside operations. It also examines areas for improvement in operations, focusing on Key Performance Areas (KPAs) and strategic objectives related to airside automation. The findings highlight several essential performance areas and formulate it to a tailored benchmarking study that airports or aviation stakeholders can adopt to develop automation in airside operations. These criteria and features are summarized into a benchmarking framework that reflects strategy objectives. This paper contributes a valuable benchmarking methodology, supporting the growing global aviation demand for improvements toward more sustainable and smart autonomous airside operations. This outcome motivates aviation stakeholders to innovate to meet environmental and social sustainability goals.
DOCUMENT