In the frame of an on-going 4-years research project, the Aviation Academy Safety Management Systems (AVAC-SMS) metric for the self-assessment of aviation Safety Management Systems (SMS) was designed based on the Safety Management Manual of the International Civil Aviation Organization and in cooperation with knowledge experts and aviation companies. The particularmetric evaluates three areas, namely (1) the degree of institutionalisation of SMS (design and implementation of processes), (2) the extent of managers’ capability to deliver the SMS processes, and (3) the employees’ perceived effectiveness of the SMS-related deliverables. The metric concludes with a score per area and per SMS component/element assessed, and it is scalable to the size and complexity of each organisation. Results of a survey at 18 aviation companies did not show statistically significant differences in their SMS scores across all three assessment areas but revealed a distance between the area of Institutionalization and the areas of Capability and Effectiveness. Also, differences were detected regarding the scores per SMS component and element within and across companies and assessment areas. The various assessment options offered for the AVAC-SMS metric accommodates the resources each SME and large company can invest in the application of the metric. Even the lowest level of resolution of the SMS metric can trigger companies to investigate further their weaker areas and foster their SMS-related activities. Therefore, the AVAC-SMS metric is deemed useful to organisations that want to self-assess their SMS and proceed to comparisons amongst various functions and levels and/or over time.
A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the relationship between Safety Management System (SMS) processes and safety outcomes. In order to explore such a relationship, respective data from 7 European airlines was analyzed to explore whether there is a monotonic relation between safety outcome metrics and SMS processes, operational activity and demographic data widely used by the industry. Few, diverse, and occasionally contradictory associations were found, indicating that (1) there is a limited value of linear thinking followed by the industry, i.e., “the more you do with an SMS the higher the safety performance”, (2) the diversity in SMS implementation across companies renders the sole use of output metrics not sufficient for assessing the impact of SMS processes on safety levels, and (3) only flight hours seem as a valid denominator in safety performance indicators. At the next phase of the research project, we are going to explore what alternative metrics can reflect SMS/safety processes and safety performance in a more valid manner
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.
The carbon dioxide emissions of aviation play an important role in many studies and databases. But unfortunately, a detailed and reliable overview of emission factors, and algorithms to calculate these based on factors like seating class, airline type, and aircraft type, did not exist for the Dutch aviation sector. This study calculated such emissions for a sample of over 5000 international flights in 2019 from the 5 Dutch main airports. The data about the flights were gathered from FlightRadar and enriched with seating capacities specific to the airline performing ten flights. in this way, emissions could be assigned to each of the four seating classes (economy, economy-plus, business and first). By aggregating the data to airline types and distance of the flight, algorithms were developed that help researchers and policy-makers to calculate the emissions. Societal IssueThe carbon footprint of Dutch aviation is about 10% of the total footprint. To prevent the world to exceed 1.5 degrees C and enter 'dangerous climate change', emissions need to decline to zero before 2050. This study helps assess and understand current aviation emissions from Dutch airports.Benefit to societyThe results were an update of emissions factors as used by the funding organisation, MilieuCentraal, and the official emission factors list (https://www.co2emissiefactoren.nl/lijst-emissiefactoren/).
In the Glasgow declaration (2021), the tourism sector promised to reduce its CO2 emissions by 50% and reduce them to zero by 2050. The urgency is felt in the sector, and small steps are made at company level, but there is a lack of insight and overview of effective measures at global level.This study focuses on the development of a necessary mix of actions and interventions that the tourism sector can undertake to achieve the goal of a 50% reduction in greenhouse gases by 2030 towards zero emissions by 2050. The study contributes to a better understanding of the paths that the tourism sector can take to achieve this and their implications for the sector. The aim of the report is to spark discussion, ideas and, above all, action.The study provides a tool that positively engages the sector in the near and more distant future, inspires discussion, generates ideas, and drives action. In addition, there will be a guide that shows the big picture and where the responsibilities lie for the reduction targets. Finally, the researchers come up with recommendations for policymakers, companies, and lobbyists at an international and European level.In part 1 of the study, desk research is used to lay the foundation for the study. Here, the contribution of tourism to global greenhouse gas emissions is mapped out, as well as the image and reputation of the sector on climate change. In addition, this section describes which initiatives in terms of, among other things, coalitions and declarations have already been taken on a global scale to form a united front against climate change.In part 2, 40 policies and measures to reduce greenhouse gas emissions in the sector are evaluated in a simulation. For this simulation, the GTTMdyn simulation model, developed by Paul Peeters from BUAS, is used which works on a global scale and shows the effect of measures on emissions, tourism, transport, economy, and behaviour. In this simulation, the researchers can 'test' measures and learn from mistakes. In the end one or more scenarios will; be developed that reach the goals of 50% reduction in 2030 and zero emissions in 2050. In part 3, the various actions that should lead to the reduction targets are tested against the impacts on the consequences for the global tourism economy, its role in providing leisure and business opportunities and the consequences for certain destinations and groups of industry stakeholders. This part will be concluded with two workshops with industry experts to reflect on the results of the simulation.Part 4 reports the results of the study including an outline of the consequences of possibly not achieving the goal. With this, the researchers want to send a warning signal to stakeholders who may be resistant to participating in the transition.