Background/Objectives: Homecare staff often take over activities instead of “doing activities with” clients, thereby hampering clients from remaining active in daily life. Training and supporting staff to integrate reablement into their working practices may reduce clients' sedentary behavior and improve their independence. This study evaluated the effectiveness of the “Stay Active at Home” (SAaH) reablement training program for homecare staff on older homecare clients' sedentary behavior. Design: Cluster randomized controlled trial (c-RCT). Setting: Dutch homecare (10 nursing teams comprising a total of 313 staff members). Participants: 264 clients (aged ≥65 years). Intervention: SAaH seeks to equip staff with knowledge, attitude, and skills on reablement, and to provide social and organizational support to implement reablement in homecare practice. SAaH consists of program meetings, practical assignments, and weekly newsletters over a 9-month period. The control group received no additional training and delivered care as usual. Measurements: Sedentary behavior (primary outcome) was measured using tri-axial wrist-worn accelerometers. Secondary outcomes included daily functioning (GARS), physical functioning (SPPB), psychological functioning (PHQ-9), and falls. Data were collected at baseline and at 12 months; data on falls were also collected at 6 months. Intention-to-treat analyses using mixed-effects linear and logistic regression were performed. Results: We found no statistically significant differences between the study groups for sedentary time expressed as daily minutes (adjusted mean difference: β 18.5 (95% confidence interval [CI] 22.4, 59.3), p = 0.374) and as proportion of wake/wear time (β 0.6 [95% CI 1.5, 2.6], p = 0.589) or for most secondary outcomes. Conclusion: Our c-RCT showed no evidence for the effectiveness of SAaH for all client outcomes. Refining SAaH, by adding components that intervene directly on homecare clients, may optimize the program and require further research. Additional research should explore the effectiveness of SAaH on behavioral determinants of clients and staff and cost-effectiveness.
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
Autonomous learning behavior is an important skill for students, but they often do not master it sufficiently. We investigated the potential of nudging as a teaching strategy in tertiary education to support three important autonomous learning behaviors: planning, preparing for class, and asking questions. Nudging is a strategy originating from behavioral economics used to influence behavior by changing the environment, and consists of altering the choice environment to steer human behavior. In this study, three nudges were designed by researchers in co-creation with teachers. A video booth to support planning behavior (n = 95), a checklist to support class preparation (n = 148), and a goal-setting nudge to encourage students to ask questions during class (n = 162) were tested in three field experiments in teachers’ classrooms with students in tertiary education in the Netherlands. A mixed-effects model approach revealed a positive effect of the goal-setting nudge on students’ grades and a marginal positive effect on the number of questions asked by students. Additionally, evidence for increased self-reported planning behavior was found in the video booth group—but no increase in deadlines met. No significant effects were found for the checklist. We conclude that, for some autonomous learning behaviors, primarily asking questions, nudging has potential as an easy, effective teaching strategy.
MULTIFILE
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.
In this project we utilize the conversational model of delivering destination information as an experimental intervention to provide tips to a sub-group of visitor participants in one specific destination, Overijssel. By contrasting the experience of this group to a randomly assigned control group will be able to test the effectiveness of hyper-personalized information. Furthermore, we will investigate the effectiveness of integrating, in the tips provided, the policy of the DMO to direct visitors to certain places while reducing the pressure on others. For this variable as well––policy-driven vs. demand-driven information sources––random assignment to test and control groups will allow us to draw conclusions about causes of differences in tourist behavior and experience.The main question is: Does the conversational information model, as exemplified by Travel with Zoey, create the possibility to direct people to the places destination managers would like them to go, while assuring they benefit equally––or even more–from their travel experience? Partners: NBTC, Marketing Oost, Travel With Zoey.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is used as an important tool for biomedical application (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this tool and its application was recently published (2018), as an especial edition of the Journal of Aerosol Sciences. One of the main known bottlenecks of this technique, it is the fact that the necessary strong electric fields create a risk for electric discharges. Such discharges destabilize the process but can also be an explosion risk depending on the application. The goal of this project is to develop a reliable tool to prevent discharges in electrospray applications.