It is of utmost importance to collect organic waste from households as a separate waste stream. If collected separately, it could be used optimally to produce compost and biogas, it would not pollute fractions of materials that can be recovered from residual waste streams and it would not deteriorate the quality of some materials in residual waste (e.g. paper). In rural areas with separate organic waste collection systems, large quantities of organic waste are recovered. However, in the larger cities, only a small fraction of organic waste is recovered. In general, citizens dot not have space to store organic waste without nuisances of smell and/or flies. As this has been the cause of low organic waste collection rates, collection schemes have been cut, which created a further negative impact. Hence, additional efforts are required. There are some options to improve the organic waste recovery within the current system. Collection schemes might be improved, waste containers might be adapted to better suit the needs, and additional underground organic waste containers might be installed in residential neighbourhoods. There are persistent stories that separate organic waste collection makes no sense as the collectors just mix all municipal solid waste after collection, and incinerate it. Such stories might be fuelled by the practice that batches of contaminated organic waste are indeed incinerated. Trust in the system is important. Food waste is often regarded as unrein. Users might hate to store food waste in their kitchen that could attract insects, or the household pets. Hence, there is a challenge for socio-psychological research. This might also be supported by technology, e.g. organic waste storage devices and measures to improve waste separation in apartment buildings, such as separate chutes for waste fractions. Several cities have experimented with systems that collect organic wastes by the sewage system. By using a grinder, kitchen waste can be flushed into the sewage system, which in general produces biogas by the fermentation of sewage sludge. This is only a good option if the sewage is separated from the city drainage system, otherwise it might create water pollution. Another option might be to use grinders, that store the organic waste in a tank. This tank could be emptied regularly by a collection truck. Clearly, the preferred option depends on local conditions and culture. Besides, the density of the area, the type of sewage system and its biogas production, and the facilities that are already in place for organic waste collection are important parameters. In the paper, we will discuss the costs and benefits of future organic waste options and by discussing The Hague as an example.
Het boek ‘3D Printing with biomaterials’ introduceert een manier om een duurzame en circulaire economie te realiseren; 3D printen gecombineerd met het gebruik van biomaterialen.
This booklet is a short reflection on the workshop activities by the research group, Popular culture Sustainability and Innovation (PSI), of the Hanze University in Groningen for the CCC Reloaded: CREALAB project over the last one and half years. Based on a series of explorative workshops this booklet includes reflections on art, design & sustainability. A broad range of different stakeholders share their views on bio based design, the value of waste and the artist as agent of sustainable change. The urgency of the topic and the innovative opportunities it generates are highlighted by contributors like creative entrepreneurs, scientists, teachers and art students that collaborated in the past workshop series. A Sense of Green includes contributions by Han Brezet, Nathalie Beekman, Klaas Pieter Lindeman, Aart van Bezooijen, Anouk Zeeuw van der Laan, Anne Nigten and others.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Ontwikkelen van bioraffinage-processen is één van de belangrijkste technologische ontwikkelingen voor de transitie van de op fossiele grondstoffen gebaseerde economie naar de biobased economie. Onder bioraffinage verstaat men het geheel aan extractie- en scheidingstechnologieën die het mogelijk maakt om biomassa te fractioneren in zijn individuele componenten. Deze componenten krijgen elk nieuwe hoogwaardige toepassingen. Momenteel zijn in Nederland een gering aantal bedrijven bezig met bioraffinage. Hierbij wordt ge-bruik gemaakt van biomassa’s die tot voor kort gezien werden als afval. Echter, in de biobased economie spreekt men niet over afval maar over nevenstromen. Door nevenstromen te raffineren tot hoogwaardige producten wordt waarde gecreëerd én wordt biomassa volledig benut. De eerste stap in veel bioraffinage-processen is het scheiden van biomassa in de oplosbare waterige fractie en de onoplosbare vezelfractie. De onoplosbare vezelfractie wordt momenteel gebruikt als bijvoorbeeld verpakkingsmateriaal of voedingsvezel in de diervoeding. De oplosbare fractie wordt momenteel als geheel gebruikt in meestal laagwaardige toepassingen zoals diervoeding of biovergisting. Steeds meer bedrijven vragen om hoogwaardigere toepassingen en daarvoor zullen de fracties verder gescheiden moeten worden. De hiervoor benodigde technologieën zijn nog volop in ontwikkeling. Op verzoek van de deelnemende bedrijven zal in dit project een aantal scheidings- en extractietechnologieën met elkaar vergeleken en verder ontwikkeld worden zodat ze als onderdeel van het bioraffinage-proces leiden tot producten met een zo hoogwaardig mogelijke toepassing. De productie van zogenaamde platformchemicaliën met behulp van fermentatie kan één van de toepassingen zijn. Dit project heeft tot doel een proof-of-principle te laten zien om vanuit biomassa tot platformchemicaliën te komen die kunnen worden ingezet als grondstof van bioplastics. Dit project moet leiden tot kennis over en toepassing van bioraffinage extractie- en scheidingstechnologieën waarbij tevens de economische factoren van implementatie van nieuwe processen en toepassingen in kaart wordt gebracht. De kennis zal gedeeld worden met belanghebbende marktpartijen en het onderwijs.
Onderzoekers van het lectoraat Innovative Testing in Life Sciences & Chemistry buigen zich over een geschikt biovergistingsproces voor kleine bedrijven en particulieren in de gebouwde omgeving. Ook wordt onderzocht hoe bioplastics slim kunnen worden verwerkt in biovergisters.Doel Hoe bioplastics afgebroken kunnen worden in een biovergister? Resultaten Bioplastics gemakkelijk en snel afgebroken kunnen worden in een biovergister. Looptijd 01 januari 2021 - 31 oktober 2022 Aanpak Het onderzoek gebeurt in samenwerking met studenten van verschillende opleidingen, het USP Innovatielab Life Sciences en Chemie en de startup Circ die zelfsturende biovergisters ontwikkelt.