This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with several techniques for object recognition and tracking, and with the guidance of a robot movement by means of computer vision. These experiments involve detection of coloured objects, object detection based on specific features, template matching with automatically generated templates, and interaction of a robot with a physical object that is viewed by a camera mounted on the robot.
DOCUMENT
In this paper we propose a head detection method using range data from a stereo camera. The method is based on a technique that has been introduced in the domain of voxel data. For application in stereo cameras, the technique is extended (1) to be applicable to stereo data, and (2) to be robust with regard to noise and variation in environmental settings. The method consists of foreground selection, head detection, and blob separation, and, to improve results in case of misdetections, incorporates a means for people tracking. It is tested in experiments with actual stereo data, gathered from three distinct real-life scenarios. Experimental results show that the proposed method performs well in terms of both precision and recall. In addition, the method was shown to perform well in highly crowded situations. From our results, we may conclude that the proposed method provides a strong basis for head detection in applications that utilise stereo cameras.
MULTIFILE
This study presents an automated method for detecting and measuring the apex head thickness of tomato plants, a critical phenotypic trait associated with plant health, fruit development, and yield forecasting. Due to the apex's sensitivity to physical contact, non-invasive monitoring is essential. This paper addresses the demand for automated, contactless systems among Dutch growers. Our approach integrates deep learning models (YOLO and Faster RCNN) with RGB-D camera imaging to enable accurate, scalable, and non-invasive measurement in greenhouse environments. A dataset of 600 RGB-D images captured in a controlled greenhouse, was fully preprocessed, annotated, and augmented for optimal training. Experimental results show that YOLOv8n achieved superior performance with a precision of 91.2 %, recall of 86.7 %, and an Intersection over Union (IoU) score of 89.4 %. Other models, such as YOLOv9t, YOLOv10n, YOLOv11n, and Faster RCNN, demonstrated lower precision scores of 83.6 %, 74.6 %, 75.4 %, and 78 %, respectively. Their IoU scores were also lower, indicating less reliable detection. This research establishes a robust, real-time method for precision agriculture through automated apex head thickness measurement.
DOCUMENT
Real-time location systems (RTLS) can be implemented in aged care for monitoring persons with wandering behaviour and asset management. RTLS can help retrieve personal items and assistive technologies that when lost or misplaced may have serious financial, economic and practical implications. Various ethical questions arise during the design and implementation phases of RTLS. This study investigates the perspectives of various stakeholders on ethical questions regarding the use of RTLS for asset management in nursing homes. Three focus group sessions were conducted concerning the needs and wishes of (1) care professionals; (2) residents and their relatives; and (3) researchers and representatives of small and medium-sized enterprises (SMEs). The sessions were transcribed and analysed through a process of open, axial and selective coding. Ethical perspectives concerned the design of the system, the possibilities and functionalities of tracking, monitoring in general and the user-friendliness of the system. In addition, ethical concerns were expressed about security and responsibilities. The ethical perspectives differed per focus group. Aspects of privacy, the benefit of reduced search times, trust, responsibility, security and well-being were raised. The main focus of the carers and residents was on a reduced burden and privacy, whereas the SMEs stressed the potential for improving products and services. Original article at MDPI: https://doi.org/10.3390/info9040080
MULTIFILE
Advanced technology is a primary solution for the shortage of care professionals and increasing demand for care, and thus acceptance of such technology is paramount. This study investigates factors that increase use of advanced technology during elderly care, focusing on current use of advanced technology, factors that influence its use, and care professionals’ experiences with the use. This study uses a mixed-method design. Logfiles were used (longitudinal design) to determine current use of advanced technology, questionnaires assessed which factors increase such use, and in-depth interviews were administered to retrieve care professionals’ experiences. Findings suggest that 73% of care professionals use advanced technology, such as camera monitoring, and consult clients’ records electronically. Six of nine hypotheses tested in this study were supported, with correlations strongest between performance expectancy and attitudes toward use, attitudes toward use and satisfaction, and effort expectancy and performance expectancy. Suggested improvements for advanced technology include expanding client information, adding report functionality, solving log-in problems, and increasing speed. Moreover, the quickest way to increase acceptance is by improving performance expectancy. Care professionals scored performance expectancy of advanced technology lowest, though it had the strongest effect on attitudes toward the technology.
DOCUMENT
Purpose: To examine the effects of different small-sided games (SSGs) on physical and technical aspects of performance in wheelchair basketball (WB) players. Design: Observational cohort study. Methods: Fifteen highly trained WB players participated in a single 5v5 (24-s shot clock) match and three 3v3 SSGs (18-s shot clock) on a (1) full court, (2) half-court, and (3) modified-length court. During all formats, players’ activity profiles were monitored using an indoor tracking system and inertial measurement units. Physiological responses were monitored via heart rate and rating of perceived exertion. Technical performance, that is, ball handling, was monitored using video analysis. Repeated-measures analysis of variance and effect sizes (ESs) were calculated to determine the statistical significance and magnitude of any differences between game formats. Results: Players covered less distance and reached lower peak speeds during half-court (P ≤ .0005; ES ≥ very large) compared with all other formats. Greater distances were covered, and more time was spent performing moderate- and high-speed activity (P ≤ .008; ES ≥ moderate) during full court compared with all other formats. Game format had little bearing on physiological responses, and the only differences in technical performance observed were in relation to 5v5. Players spent more time in possession, took more shots, and performed more rebounds in all 3v3 formats compared with 5v5 (P ≤ .028; ES ≥ moderate). Conclusions: Court dimensions affect the activity profiles of WB players during 3v3 SSGs yet had little bearing on technical performance when time pressures (shot clocks) were constant. These findings have important implications for coaches to understand which SSG format may be most suitable for physically and technically preparing WB players. DOI: https://doi.org/10.1123/ijspp.2017-0500 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
Cozmo is a real-life robot designed to interact with people playing games, making sounds, expressing emotions on a LCD screen and many other pre-programmable functions. We present the development and implementation of an educational platform for Cozmo mobile robot, with several features, including web server for user interface, computer vision, voice recognition, robot trajectory tracking control, among others. Functions for educational purposes were implemented, including mathematical operations, spelling, directions, and questions functions that gives more flexibility for the teachers to create their own scripts. In this system, a cloud voice recognition tool was implemented to improve the interactive system between Cozmo and the users. Also, a cloud computing vision system was used to perform object recognition using Cozmo's camera, to be applied on educational games. Other functions were created with the purpose of controlling the emotions and the motors of Cozmo to create more sophisticated scripts. To apply the functions on Cozmo robot, an interpreter algorithm was developed to translate the functions into Cozmo's programming language. To validate this work, the proposed framework was presented to several elementary school teachers (classes with students between 4 and 12). Students and teacher's impressions are reported in this text, and indicate that the proposed system can be a useful educational tool.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
Assistive Technology (AT) is any technology that supports people with functional difficulties to perform their daily activities with less difficulty and/or obstruction, thus contributing to a more fulfilling life. This refers to people of all ages and to all kinds of functional limitations, either permanent or temporary. Assistive products can be traditional physical products, such as wheelchairs, eyeglasses, hearing aids, or prostheses, but they can also be special input devices, care robots, computers with accessible software, apps for smartphones, home automation solutions, virtual realities, etc. It is essential to understand that AT involves more than just familiar products, and that it also includes knowledge about the personalized selection of appropriate solutions, provisions, and services, as well as the training of all parties involved, the measurement of outcomes and impacts, awareness of ethical issues, etc.
DOCUMENT