City authorities want to know how to match the charging infrastructures for electric vehicles with the demand. Using camera recognition algorithms from artificial intelligence we investigated the behavior of taxis at a charging stations and a taxi stand.
MULTIFILE
This paper presents data-driven insights from a case study that was carried out in an University EV charging plaza where EV charging demand is met with the combination of the University campus grid and installed solar capacity. First, we assessed the plaza dependency on the grid for meeting EV charging demand and intake of excess solar energy using the available dataset. By modifying the plaza network to accommodate a small approx. 50 kWh battery storage can significantly reduce the grid dependency of the plaza by approx. 30% compared to the present situation and can also increase the green energy utility for EV charging by 10-20%. Having an battery storage could also help overcome the limitations due to the campus grid capacity during EV charging peak demand by means of scheduling algorithms. Second, we assessed the utility rate of the plaza which indicated that the average utility of charging infrastructure is about 30% which has an increasing trend over the analysed period. The low utility and EV charging peak demand may be the result of current EV user behavior where the average idle time during charging sessions is found to be approx. 90 minutes. Reduction in idle time by one third may increase the capacity and utility of plaza by two to two and half times the forecasted daily demand. By having the campus grid capacity and user information may further help with effect EV demand forecasting and scheduling.
Fast charging is usually seen as a means to facilitate long distance driving for electric vehicles and roll-out therefore often happens with corridors in mind. Due to limited charging speeds, EV drivers usually tend to charge at home or work when the car is parked for a longer period to avoid unnecessarily time loss. However with increasing charging speeds and different modes (taxi, car sharing) also switching to electric vehicles, a different approach to fast charging is needed. This research investigates the different intentions of EV drivers at fast charging stations in inner-cities and along highways to see how usage at such stations differs to inform policy makers and charging point operators to accommodate an efficient roll-out strategy.
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.