This paper analyses the effect of two new developments: electrification and ‘free floating’ car sharing and their impact on public space. Contrary to station based shared cars, free floating cars do not have dedicated parking or charging stations. They therefore park at public parking spots and utilize public charging stations. A proper network of public charging stations is therefore required in order to keep the free floating fleet up and running. As more municipalities are considering the introduction of an electric free floating car sharing system, the outline of such a public charging network becomes a critical piece of information. The objective of this paper is to create insights that can optimize charging infrastructure for free floating shared cars, by presenting three analyses. First, a business area analysis shows an insight into which business areas are of interest to such a system. Secondly, the parking and charging behaviour of the vehicles is further examined. The third option looks deeper into the locations and their success factors. Finally, the results of the analysis of the city of Amsterdam are used to model the city of The Hague and the impact that a free floating electric car sharing system might have on the city and which areas are the white spots that need to be filled in.
This paper presents data-driven insights from a case study that was carried out in an University EV charging plaza where EV charging demand is met with the combination of the University campus grid and installed solar capacity. First, we assessed the plaza dependency on the grid for meeting EV charging demand and intake of excess solar energy using the available dataset. By modifying the plaza network to accommodate a small approx. 50 kWh battery storage can significantly reduce the grid dependency of the plaza by approx. 30% compared to the present situation and can also increase the green energy utility for EV charging by 10-20%. Having an battery storage could also help overcome the limitations due to the campus grid capacity during EV charging peak demand by means of scheduling algorithms. Second, we assessed the utility rate of the plaza which indicated that the average utility of charging infrastructure is about 30% which has an increasing trend over the analysed period. The low utility and EV charging peak demand may be the result of current EV user behavior where the average idle time during charging sessions is found to be approx. 90 minutes. Reduction in idle time by one third may increase the capacity and utility of plaza by two to two and half times the forecasted daily demand. By having the campus grid capacity and user information may further help with effect EV demand forecasting and scheduling.
The consistent demand for improving products working in a real-time environment is increasing, given the rise in system complexity and urge to constantly optimize the system. One such problem faced by the component supplier is to ensure their product viability under various conditions. Suppliers are at times dependent on the client’s hardware to perform full system level testing and verify own product behaviour under real circumstances. This slows down the development cycle due to dependency on client’s hardware, complexity and safety risks involved with real hardware. Moreover, in the expanding market serving multiple clients with different requirements can be challenging. This is also one of the challenges faced by HyMove, who are the manufacturer of Hydrogen fuel cells module (https://www.hymove.nl/). To match this expectation, it starts with understanding the component behaviour. Hardware in the loop (HIL) is a technique used in development and testing of the real-time systems across various engineering domain. It is a virtual simulation testing method, where a virtual simulation environment, that mimics real-world scenarios, around the physical hardware component is created, allowing for a detailed evaluation of the system’s behaviour. These methods play a vital role in assessing the functionality, robustness and reliability of systems before their deployment. Testing in a controlled environment helps understand system’s behaviour, identify potential issues, reduce risk, refine controls and accelerate the development cycle. The goal is to incorporate the fuel cell system in HIL environment to understand it’s potential in various real-time scenarios for hybrid drivelines and suggest secondary power source sizing, to consolidate appropriate hybridization ratio, along with optimizing the driveline controls. As this is a concept with wider application, this proposal is seen as the starting point for more follow-up research. To this end, a student project is already carried out on steering column as HIL
Possibly, the aviation sector’s decarbonization challenge (see Dutch knowledge key in international climate study for tourism | CELTH) has profound implications for the ability of aviation-de-pendent outbound tour operators to attract capital and with that their ability to maintain or trans-form their current business portfolio (understood here as the current product offers and approximate carbon footprints, business models, and ownership structures present in this economic do-main). Knowledge about these (possible) investment risks and their business and policy implications is lacking. This project therefore addresses this knowledge gap by means of the following research questions.1. What is the current business portfolio of Dutch outbound tour operators?a. To what extend do Dutch outbound tour operators depend on aviation in terms of product offer and turnover?b. What is the relative carbon footprint share of aviation-based products compared to the total outbound product offer and turnover of Dutch outbound tour operators?2. What are investment risks of this business portfolio as indicated by investors?a. How do investors evaluate investment risks in relation to climate change mitigation and de-carbonisation?b. What are investment risks of the business portfolio of Dutch outbound tour operators?c. What are the reflections on and implications of these investment risks from the perspective of policymakers and tour operators?