The increasing rate of urbanization along with its socio-environmental impact are major global challenges. Therefore, there is a need to assess the boundaries to growth for the future development of cities by the inclusion of the assessment of the environmental carrying capacity (ECC) into spatial management. The purpose is to assess the resource dependence of a given entity. ECC is usually assessed based on indicators such as the ecological footprint (EF) and biocapacity (BC). EF is a measure of the biologically productive areas demanded by human consumption and waste production. Such areas include the space needed for regenerating food and fibers as well as sequestering the generated pollution, particularly CO2 from the combustion of fossil fuels. BC reflects the biological regeneration potential of a given area to regenerate resources as well to absorb waste. The city level EF assessment has been applied to urban zones across the world, however, there is a noticeable lack of urban EF assessments in Central Eastern Europe. Therefore, the current research is a first estimate of the EF and BC for the city of Wrocław, Poland. This study estimates the Ecological Footprint of Food (EFF) through both a top-down assessment and a hybrid top-down/bottom-up assessment. Thus, this research verifies also if results from hybrid method could be comparable with top-down approach. The bottom-up component of the hybrid analysis calculated the carbon footprint of food using the life cycle assessment (LCA) method. The top-down result ofWrocław’s EFF were 1% greater than the hybrid EFF result, 0.974 and 0.963 gha per person respectively. The result indicated that the EFF exceeded the BC of the city of Wrocław 10-fold. Such assessment support efforts to increase resource efficiency and decrease the risk associated with resources—including food security. Therefore, there is a need to verify if a city is able to satisfy the resource needs of its inhabitants while maintaining the natural capital on which they depend intact. Original article at: https://doi.org/10.3390/resources7030052 © 2018 by the authors. Licensee MDPI.
MULTIFILE
The carbon footprint for the downstream dairy value chain, milk collection and dairy processing plants was estimated through the contribution of emissions per unit of collected and processed milk, whereas that for the upstream dairy value chain, input supply and production was not considered. A survey was conducted among 28 milk collectors and four employees of processing plants. Two clusters were established: small- and large-scale milk collectors. The means of carbon dioxide equivalent per kilogramme (CO2-eq/kg) milk were compared between clusters by using independent sample t-test. The average utilisation efficiency of milk cooling refrigerators for small- and large-scale collectors was 48.5 and 9.3%, respectively. Milk collectors released carbon footprint from their collection, cooling and distribution practices. The mean kg CO2-eq/kg milk was 0.023 for large-scale collectors and 0.106 for small-scale collectors (p < 0.05). Milk processors contributed on average 0.37 kg CO2-eq/kg milk from fuel (diesel and petrol) and 0.055 from electricity. Almi fresh milk and milk products processing centre emitted the highest carbon footprint (0.212 kg CO2-eq/kg milk), mainly because of fuel use. Generally, in Ziway-Hawassa milk shed small-scale collectors released higher CO2-eq/kg milk than large-scale collectors.
DOCUMENT
The aim of this document is to outline the preliminary requirements and steps needed to fully establish frameworks for certification systems across Europe, specifically to support and incentivize the restoration of peatlands and to provide a framework for reducing GHG emissions from degraded and mismanaged peatlands on a large scale. This will ensure that peatlands across Europe fulfil their potential to become a net carbon sink by 2050, while optimizing ecosystem service provision in a way that is fully consistent with all the relevant European policies. This report covers the following topics: - Analysis of current Carbon Credit systems and other incentives to support wet peatlands. - Economic land use analysis relating to peatlands. - Outline of a framework to support rewetting and peatland restoration. - Recommendations for an Eco-Credit system across Europe.
DOCUMENT
Climate change is undermining the importance and sustainability of cooperatives as important organizations in small holder agriculture in developing countries. To adapt, cooperatives could apply carbon farming practices to reduce greenhouse gas emissions and enhance their business by increasing yields, economic returns and enhancing ecosystem services. This study aimed to identify carbon farming practices from literature and investigate the rate of application within cooperatives in Uganda. We reviewed scholarly literature and assed them based on their economic and ecological effects and trade-offs. Field research was done by through an online survey with smallholder farmers in 28 cooperatives across 19 districts in Uganda. We identified 11 and categorized them under three farming systems: organic farming, conservation farming and integrated farming. From the field survey we found that compost is the most applied CFP (54%), crop rotations (32%) and intercropping (50%) across the three categorizations. Dilemmas about right organic amendment quantities, consistent supplies and competing claims of residues for e.g. biochar production, types of inter crops need to be solved in order to further advance the application of CFPs amongst crop cooperatives in Uganda.
DOCUMENT
The Dutch government, in alignment with the Paris climate agreement, has expressed the ambition to reduce CO 2 emissions in the Netherlands by 49% in 2030 compared to 1990. As freight transport is recognized as a serious CO 2 emitter, this sector is confronted with a substantial part of the target. For cities, the reduction of the urban freight transport emissions is, next to the CO 2 reduction, also important to improve the air quality. Dutch municipalities take an active role in coordination, facilitation and acceleration of the emission reduction processes, not only via regulation but also by using their public procurement power. This paper describes the City of Rotterdam's experiences from the EU Horizon 2020 BuyZET project. This project was launched in November 2016 and includes the cities of Rotterdam, Oslo and Copenhagen. The project aims at understanding and optimising the impact of public procurement activities on transport patterns and emissions in cities as well as to find innovative and sustainable delivery solutions for goods and services-related transport in order to reduce emissions.
MULTIFILE
Energy policies are vital tools used by countries to regulate economic and social development as well as guarantee national security. To address the problems of fragmented policy objectives, conflicting tools, and overlapping initiatives, the internal logic and evolutionary trends of energy policies must be explored using the policy content. This study uses 38,277 energy policies as a database and summarizes the four energy policy objectives: clean, low-carbon, safe, and efficient. Using the TextCNN model to classify and deconstruct policies, the LDA + Word2vec theme conceptualization and similarity calculations were compared with the EISMD evolution framework to determine the energy policy theme evolution path. Results indicate that the density of energy policies has increased. Policies have become more comprehensive, barriers between objectives have gradually been broken, and low-carbon objectives have been strengthened. The evolution types are more diversified, evolution paths are more complicated, and the evolution types are often related to technology, industry, and market maturity. Traditional energy themes evolve through inheritance and merger; emerging technology and industry themes evolve through innovation, inheritance, and splitting. Moreover, this study provides a replicable analytical framework for the study of policy evolution in other sectors and evidence for optimizing energy policy design
DOCUMENT
Authorities aim at making the urban freight system more sustainable. The most common instruments to do so are regulation or stimulation of good practices, by offering subsidies or initiating projects together with the private parties that are responsible for actually performing urban freight transport operations. This contribution examines the possibilities for (local) authorities to use their market role, i.e. being a big procurer of goods and services in a city that result in many urban freight transport trips, to stimulate more sustainable urban freight transportation. Procurement is usually not linked to transport and data from procured goods and services do not provide sufficient insights to estimates the impacts of deliveries and trips related to the procured goods and services. This contribution discusses two cases in which (local) authorities try to make the urban freight transport that results from their procurement activities visible, via different methods, such as delivery service plans, and spend analyses. The cases of Rotterdam (in the project BuyZET) and for the logistics hub in The Hague show the first results of how (local) authorities can act to improve urban freight transport once the trips caused by procured goods and services are clearly mapped. © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
LINK
This booklet presents sixteen 'practice briefs' which are popular publications based on 12 Master and one Bachelor theses of Van Hall Larenstein University of Applied Sciences (VHL). All theses were commissioned through the research project entitled 'Inclusive and climate smart business models in Ethiopian and Kenyan dairy value chains (CSDEK)'. The objective of this research is to identify scalable, climate smart dairy business models in the context of the ongoing transformation from informal to formal dairy chains in Kenya and Ethiopia.
DOCUMENT
Speech by dr. Robert Baars at the official inauguration as Professor in Climate Smart Dairy Value Chains at Van Hall Larenstein University of Applied Sciences, 24th September 2021, Dairy Campus, Leeuwarden, The Netherlands.
DOCUMENT
This magazine presents the highlights of the applied research project “Inclusive and climate-smart business models in Ethiopian and Kenyan dairy valuechains (CSDEK)”. The CSDEK applied research project was conducted in six case study areas, three in Ethiopia and three in Kenya. At the time of publishing this magazine, research was still ongoing in some of the study areas. The projectteam and researchers hope to contribute to creating awareness of climatesmartdairy practices and development of the dairy sector in Ethiopia and Kenya. In two of the study areas, collaboration between VHL and dairy stakeholders will continue, preferably through local networks in a Living Lab approach.
DOCUMENT