The production of biogas through anaerobic digestion is one of the technological solutions to convert biomass into a readily usable fuel. Biogas can replace natural gas, if the biogas is upgraded to green gas. To contribute to the EU-target to reduce Green House Gases emissions, the installed biogas production capacity and the amount of farm-based biomass, as a feedstock, has to be increased. A model was developed to describe a green gas production chain that consists of several digesters connected by a biogas grid to anupgrading and injection facility. The model calculates costs and energy use for 1 m3 of green gas. The number of digesters in the chain can be varied to find results for different configurations. Results are presented for a chain with decentralized production of biogas, i.e. a configuration with several digesters, and a centralized green gas production chain using a single digester. The model showed that no energy advantage per produced m3 green gas can be created using a biogas grid and decentralized digesters instead of one large-scale digester. Production costs using a centralized digester are lower, in the range of5 Vct to 13 Vct per m3, than in a configuration of decentralized digesters. The model calculations also showed the financial benefit for an operator of a small-scale digester wishing to produce green gas in the cooperation with nearby other producers. E.g. subsidies and legislation based on environmental arguments could encourage the use of decentralized digesters in a biogas grid.
DOCUMENT
Sustainable consumption is interlinked with sustainable production. This chapter will introduce the closed-loop production, the circular economy, the steady state economy, and Cradle to Cradle (C2C) models of production. It will reflect on the key blockages to a meaningful sustainable production and how these could be overcome, particularly in the context of business education. The case study of the course for bachelor’s students within International Business Management Studies (IBMS) program at three Universities of Applied Science (vocational schools), and at Leiden University College in The Netherlands will be discussed. Student teams from these schools were given the assignment to make a business plan for a selected sponsor company in order to advise them how to make a transition from a linear to circular economy model. These case studies will illustrate the opportunities as well as potential pitfalls of the closed loop production models. The results of case studies’ analysis show that there was a mismatch between expectations of the sponsor companies and those of students on the one hand and a mismatch between theory and practice on the other hand. The former mismatch is explained by the fact that the sponsor companies have experienced a number of practical constraints when confronted with the need for the radical overhaul of established practices within the entire supply chain and students have rarely considered the financial viability of the "ideal scenarios" of linear-circular transitions. The latter mismatch applies to what students had learned about macro-economic theory and the application through micro-economic scenarios in small companies. https://www.springer.com/gp/book/9783319656076 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
The missing link in diagnostic testing for rheumatoid arthritis (RA) is an agglutination assay, easy to perform and dedicated to decentralized testing. Approximately 75% of RA patients produce autoantibodies to citrullinated proteins (ACPA), which can be detected using an agglutination-based diagnostic test. Such a diagnostic test will be cheaper, less laborious and faster than current tests and does not require sophisticated equipment. Novio Catalpa is developing this alternative test for ACPA in collaboration with Radboud University. To develop this test, specifically tagged and citrullinated nanobodies are needed, but the production is still challenging. Current methods for the production of ACPA diagnostics involve chemical synthesis, in which a variety of toxic chemicals are used in each step. The alternative assay involves nanobodies fused with RA-biomarker target entities, which can be completely produced by ‘green synthesis’ in the yeast Pichia pastoris using the expertise of HAN BioCentre. The yeast P. pastoris has proven to be able to produce nanobodies and is a fast and cost-effective platform that often results in high protein yields. Goal of the project is therefore to determine the feasibility and best green route to produce purified nanobodies tagged with citrullinated ACPA targets that can be used for developing an agglutination assay for RA. P. pastoris does not produce endogenous PAD enzymes which are needed for citrullination of the nanobodies in order to be able to use it in a RA agglutination test. Therefore, PAD enzymes from other sources need to be tested and applied. The project results will be directly used by Novio Catalpa to further develop the innovative test for RA. This project will contribute to and finally result in a single-step agglutination assay suitable for both point-of-care testing and automation in clinical laboratories.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
This Professional Doctorate (PD) research focuses on optimizing the intermittency of CO₂-free hydrogen production using Proton Exchange Membrane (PEM) and Anion Exchange Membrane (AEM) electrolysis. The project addresses challenges arising from fluctuating renewable energy inputs, which impact system efficiency, degradation, and overall cost-effectiveness. The study aims to develop innovative control strategies and system optimizations to mitigate efficiency losses and extend the electrolyzer lifespan. By integrating dynamic modeling, lab-scale testing at HAN University’s H2Lab, and real-world validation with industry partners (Fluidwell and HyET E-Trol), the project seeks to enhance electrolyzer performance under intermittent conditions. Key areas of investigation include minimizing start-up and shutdown losses, reducing degradation effects, and optimizing power allocation for improved economic viability. Beyond technological advancements, the research contributes to workforce development by integrating new knowledge into educational programs, bridging the gap between research, industry, and education. It supports the broader transition to a CO₂-free energy system by ensuring professionals are equipped with the necessary skills. Aligned with national and European sustainability goals, the project promotes decentralized hydrogen production and strengthens the link between academia and industry. Through a combination of theoretical modeling, experimental validation, and industrial collaboration, this research aims to lower the cost of green hydrogen and accelerate its large-scale adoption.