The Northern Netherlands is like many delta’s prone to a wide range of climate change effects. Given the region its long history with floods and adaptation, there are numerous initiatives to be found that tried to battle these effects. As part of the Climate Adaptation Week Groningen, an inventory was made of these initiatives. The most inspiring ones were coined ‘best practices’, and analysed in order to learn lessons. A distinction was made between 4 regional landscape types. The first consists of the coastline itself, where the effects of the rising sea level begin to show. The second covers the farmlands near the coastlines, where challenges such as salinisation and the loss of biodiversity prevail. A third landscape covers the historically compact cities, which have to deal with rising temperatures and heavy rainfall in increasingly limited spaces. The fourth and final landscape comprises the wetlands surrounding the cities, where the natural capacity to retain and store rainwater is undermined by its agriculture usage. Most of these challenges form a risk for maintaining a liveable region. The best practices that were collected show a diverse set of innovations and experiments, both on small and large scales. Three main characteristics could be distinguished that illustrate trends in climate adaptation practices. First, many best practices were aimed at restoring and embracing the natural capacity of the different landscapes, giving more and more room for the building with nature concept as part of building resilience. Second, climate adaptation is seldomly focussed on as the sole function of a spatial intervention, and is almost always part of integrated plans in which biodiversity, agriculture, recreation or other themes are prolonged with it. A third and last characteristic shows that many projects embed a strong focus on the historical context of places as a source of inspiration and cultural identity. The best practices show how different ways of adapting are emerging and can inspire planners across the world.
DOCUMENT
Cities are becoming increasingly vulnerable to climate change and there is an urgent need to become more resilient. This research involves the development of the City Climate Scan methodology to measure, map, scan and assess different parameters that provide insight into the vulnerability of urban areas and neighborhoods. The research involved the development of a set of measurement tools that can be applied in different urban neighborhoods in a low-cost low-tech approach with teams of stakeholders and practitioners. The City Climate Scan method was tested in different cities around the globe with groups of young professionals and stakeholders in rapid urban appraisals.For the Rotterdam City Climate Scan (September 2017), the following challenges were selected: risk of flooding, heat stress, water quality (micro-pollutants and plastic waste) and air quality. The Rotterdam climate scan is evaluated with their triple helix partners (public, private and academic partners). The conclusion is that the City Climate Scan approach helps policy makers and practitioners to gather valuable data for decision makers in a rapid appraisal at the neighborhood and city level. The results of the City Climate Scan methodprovides insights, creates awareness and brings together stakeholders. The most valuable deliverable is the concrete and tangible results. The participatory approach brings residents and practitioners together and provides insight into local problems, while at the same time the method facilitates the collection of valuable data about the robustness of neighborhoods. As a result of this positive evaluation, the City Climate Scan will be up scaled to a number of cities in Europe and Asia in the upcoming months.
DOCUMENT
This paper introduces and contextualises Climate Futures, an experiment in which AI was repurposed as a ‘co-author’ of climate stories and a co-designer of climate-related images that facilitate reflections on present and future(s) of living with climate change. It converses with histories of writing and computation, including surrealistic ‘algorithmic writing’, recombinatory poems and ‘electronic literature’. At the core lies a reflection about how machine learning’s associative, predictive and regenerative capacities can be employed in playful, critical and contemplative goals. Our goal is not automating writing (as in product-oriented applications of AI). Instead, as poet Charles Hartman argues, ‘the question isn’t exactly whether a poet or a computer writes the poem, but what kinds of collaboration might be interesting’ (1996, p. 5). STS scholars critique labs as future-making sites and machine learning modelling practices and, for example, describe them also as fictions. Building on these critiques and in line with ‘critical technical practice’ (Agre, 1997), we embed our critique of ‘making the future’ in how we employ machine learning to design a tool for looking ahead and telling stories on life with climate change. This has involved engaging with climate narratives and machine learning from the critical and practical perspectives of artistic research. We trained machine learning algorithms (i.e. GPT-2 and AttnGAN) using climate fiction novels (as a dataset of cultural imaginaries of the future). We prompted them to produce new climate fiction stories and images, which we edited to create a tarot-like deck and a story-book, thus also playfully engaging with machine learning’s predictive associations. The tarot deck is designed to facilitate conversations about climate change. How to imagine the future beyond scenarios of resilience and the dystopian? How to aid our transition into different ways of caring for the planet and each other?
DOCUMENT
This project extends the knowledge and scope of carbon footprinting in tourism. Currently, the carbon footprint of holidaymakers is available as time-series based on the CVO (Continue Vakantie Onderzoek) for the years 2002, 2005 and all between 2008 and 2018. For one year, 2009, a report has also been written about inbound tourism. The carbon footprint of business travel has not been determined, whereas there has been considerable interest throughout the years from businesses to assess and mitigate their travel footprints. There is also increasing policy attention for travel footprints. In 2018, a modified setup of the CVO caused the need to revise our statistical model and correction factors to be developed to counter the potential effects of a trend-breach. The project aimed to check and improve the current syntax for Dutch holidaymakers, adjust the one for inbound tourism, and develop a new one for Dutch business travel. The project output includes a report on the carbon footprint of Dutch holidaymakers for 2018, on inbound tourism for 2014, and on Dutch business travel for 2016, based on the CVO, inbound tourim dataset, and CZO. The project ends with a workshop with stakeholders to identify the way forward in tourism carbon footprinting in the Netherlands (tools, applications, etc.)Project partners: NRIT Research, NBTC-NIPO Research, CBS
DISTENDER will provide integrated strategies by building a methodological framework that guide the integration of climate change(CC) adaptation and mitigation strategies through participatory approaches in ways that respond to the impacts and risks of climatechange (CC), supported by quantitative and qualitative analysis that facilitates the understanding of interactions, synergies and tradeoffs.Holistic approaches to mitigation and adaptation must be tailored to the context-specific situation and this requires a flexibleand participatory planning process to ensure legitimate and salient action, carried out by all important stakeholders. DISTENDER willdevelop a set of multi-driver qualitative and quantitative socio-economic-climate scenarios through a facilitated participatory processthat integrates bottom-up knowledge and locally-relevant drivers with top-down information from the global European SharedSocioeconomic Pathways (SSPs) and downscaled Representative Concentration Pathways (RCPs) from IPCC. A cross-sectorial andmulti-scale impact assessment modelling toolkit will be developed to analyse the complex interactions over multiple sectors,including an economic evaluation framework. The economic impact of the different efforts will be analyse, including damage claimsettlement and how do sectoral activity patterns change under various scenarios considering indirect and cascading effects. It is aninnovative project combining three key concepts: cross-scale, integration/harmonization and robustness checking. DISTENDER willfollow a pragmatic approach applying methodologies and toolkits across a range of European case studies (six core case studies andfive followers) that reflect a cross-section of the challenges posed by CC adaptation and mitigation. The knowledge generated byDISTENDER will be offered by a Decision Support System (DSS) which will include guidelines, manuals, easy-to-use tools andexperiences from the application of the cases studies.
As climate change accelerates, rising sea levels pose challenges for low-lying nations like the Netherlands. Floating developments (such as homes, solar parks, and pavilions) are considered the most climate adaptative solution for the future, but the effects on the environment are unknown which is holding back this floating transformation. Since public and private partners are not able to answer questions on the effect of floating urbanisation on the environment and water quality based on speculations by models without field data, permits are given only after proof that ecological & water quality will not affected (also EU warnings ‘deteriorating’ water quality (UvW 2025, EU 2025). This proposal aims to develop an innovative autonomous docking station for aquatic drones, enhancing environmental monitoring of floating structures. Only a few monitoring campaigns measured the impact of small floating structures (small structures and only basic parameters). Traditional monitoring methods rely on manual sampling and static sensors, which are costly, labour-intensive, and provide delayed results. A new study, led by Hanze with Gemeente Rotterdam, Waternet (Gemeente Amsterdam) and Indymo, will assess the impact of new large-scale floating developments with a new method. Autonomous aquatic drones improve data resolution but face operational challenges such as battery life and data retrieval. An innovating docking station will address these issues by enabling drones to recharge, offload data, and perform continuous missions without human intervention. Advanced tools—including aquatic drones, 360-degree cameras, sonar imaging, and real-time sensors—will collect high-resolution environmental data also monitoring biodiversity and bathymetry. The proposed docking station will support real-time sensor networks, allowing for spatial and temporal data collection. It will improve the (cost) efficiency and quality of long-term environmental monitoring, providing insights into water quality dynamics and underwater ecosystems in Rotterdam and Amsterdam as an international example of floating development in the battle of climate change.