As the population ages, more people will have comorbid disorders and polypharmacy. Medication should be reviewed regularly in order to avoid adverse drug reactions and medication-related hospital visits, but this is often not done. As part of our student-run clinic project, we investigated whether an interprofessional student-run medication review program (ISP) added to standard care at a geriatric outpatient clinic leads to better prescribing. In this controlled clinical trial, patients visiting a memory outpatient clinic were allocated to standard care (control group) or standard care plus the ISP team (intervention group). The medications of all patients were reviewed by a review panel (“gold standard”), resident, and in the intervention arm also by an ISP team consisting of a group of students from the medicine and pharmacy faculties and students from the higher education school of nursing for advanced nursing practice. For both groups, the number of STOPP/START-based medication changes mentioned in general practitioner (GP) correspondence and the implementation of these changes about 6 weeks after the outpatient visit were investigated. The data of 216 patients were analyzed (control group = 100, intervention group = 116). More recommendations for STOPP/STARTbased medication changes were made in the GP correspondence in the intervention group than in the control group (43% vs. 24%, P = < 0.001). After 6 weeks, a significantly higher proportion of these changes were implemented in the intervention group (19% vs. 9%, P = 0.001). The ISP team, in addition to standard care, is an effective intervention for optimizing pharmacotherapy and medication safety in a geriatric outpatient clinic.
MULTIFILE
To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.
This systematic review aims to get insight into the feasibility of cardiopulmonary exercise testing (CPET) in patients with cancer prior to a physical exercise programme. We will focus on quality (defined as the adherence to international guidelines for methods of CPET) and safety of CPET. Furthermore, we compare the peak oxygen uptake (V̇O2peak) values of patients with cancer with reference values for healthy persons to put these values into a clinical perspective. A computer aided search with ‘cardiopulmonary exercise testing’ and ‘cancer’ using MEDLINE, EMBASE, Pedro, CINAHL® and SPORTDiscus™ was carried out. We included studies in which CPET with continuous gas exchange analysis has been performed prior to a physical exercise programme in adults with cancer. Twenty studies describing 1158 patients were eligible. Reported adherence to international recommendations for CPET varied per item. In most studies, the methods of CPET were not reported in detail. Adverse events occurred in 1% of patients. The percentage V̇O2peak of reference values for healthy persons varied between 65% and 89% for tests before treatment, between 74% and 96% for tests during treatment and between 52% and 117% for tests after treatment. Our results suggest that CPET is feasible and seems to be safe for patients with cancer prior to a physical exercise programme. We recommend that standard reporting and quality guidelines should be followed for CPET methods. The decreased V̇O2peak values of patients with cancer indicate that physical exercise should be implemented in their standard care.
The missing link in diagnostic testing for rheumatoid arthritis (RA) is an agglutination assay, easy to perform and dedicated to decentralized testing. Approximately 75% of RA patients produce autoantibodies to citrullinated proteins (ACPA), which can be detected using an agglutination-based diagnostic test. Such a diagnostic test will be cheaper, less laborious and faster than current tests and does not require sophisticated equipment. Novio Catalpa is developing this alternative test for ACPA in collaboration with Radboud University. To develop this test, specifically tagged and citrullinated nanobodies are needed, but the production is still challenging. Current methods for the production of ACPA diagnostics involve chemical synthesis, in which a variety of toxic chemicals are used in each step. The alternative assay involves nanobodies fused with RA-biomarker target entities, which can be completely produced by ‘green synthesis’ in the yeast Pichia pastoris using the expertise of HAN BioCentre. The yeast P. pastoris has proven to be able to produce nanobodies and is a fast and cost-effective platform that often results in high protein yields. Goal of the project is therefore to determine the feasibility and best green route to produce purified nanobodies tagged with citrullinated ACPA targets that can be used for developing an agglutination assay for RA. P. pastoris does not produce endogenous PAD enzymes which are needed for citrullination of the nanobodies in order to be able to use it in a RA agglutination test. Therefore, PAD enzymes from other sources need to be tested and applied. The project results will be directly used by Novio Catalpa to further develop the innovative test for RA. This project will contribute to and finally result in a single-step agglutination assay suitable for both point-of-care testing and automation in clinical laboratories.
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
Although cardiorespiratory fitness (CRF) is being recognized as an important marker of health and functioning, it is currently not routinely assessed in daily clinical practice. There is an urgent need for a simple and feasible exercise test that can validly and reliably estimate an individual’s CRF. The Steep Ramp Test (SRT) is such a practical short-time exercise test (work rate increments of 25 W/10 seconds, so the test phase will only take up to 4 minutes) on a cycle ergometer, that does not require expensive equipment or specialized knowledge, and has been found able to validly and reliably estimate an individual’s CRF. Although the SRT is already frequently used in the Netherlands to evaluate CRF, sex- and age-specific reference values for adults and elderly are lacking thus far, which seriously limits the interpretation of test results.