Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) (ie, progressive exercise provocation in association with serial electrocardiograms [ECG], hemodynamics, oxygen saturation, and subjective symptoms) and measurement of ventilatory gas exchange amounts to a superior method to: 1) accurately quantify cardiorespiratory fitness (CRF), 2) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiologic mechanism(s) and/or performance differences, and 3) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown etiology where the data gained from this form of ET is highly valuable in terms of clinical decision making
DOCUMENT
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) [i.e. progressive exercise provocation in association with serial electrocardiograms (ECGs), haemodynamics, oxygen saturation, and subjective symptoms] and measurement of ventilatory gas exchange amounts to a superior method to: (i) accurately quantify cardiorespiratory fitness (CRF), (ii) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiological mechanism(s) and/or performance differences, and (iii) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown aetiology where the data gained from this form of ET is highly valuable in terms of clinical decision making.1
DOCUMENT
The missing link in diagnostic testing for rheumatoid arthritis (RA) is an agglutination assay, easy to perform and dedicated to decentralized testing. Approximately 75% of RA patients produce autoantibodies to citrullinated proteins (ACPA), which can be detected using an agglutination-based diagnostic test. Such a diagnostic test will be cheaper, less laborious and faster than current tests and does not require sophisticated equipment. Novio Catalpa is developing this alternative test for ACPA in collaboration with Radboud University. To develop this test, specifically tagged and citrullinated nanobodies are needed, but the production is still challenging. Current methods for the production of ACPA diagnostics involve chemical synthesis, in which a variety of toxic chemicals are used in each step. The alternative assay involves nanobodies fused with RA-biomarker target entities, which can be completely produced by ‘green synthesis’ in the yeast Pichia pastoris using the expertise of HAN BioCentre. The yeast P. pastoris has proven to be able to produce nanobodies and is a fast and cost-effective platform that often results in high protein yields. Goal of the project is therefore to determine the feasibility and best green route to produce purified nanobodies tagged with citrullinated ACPA targets that can be used for developing an agglutination assay for RA. P. pastoris does not produce endogenous PAD enzymes which are needed for citrullination of the nanobodies in order to be able to use it in a RA agglutination test. Therefore, PAD enzymes from other sources need to be tested and applied. The project results will be directly used by Novio Catalpa to further develop the innovative test for RA. This project will contribute to and finally result in a single-step agglutination assay suitable for both point-of-care testing and automation in clinical laboratories.
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
Although cardiorespiratory fitness (CRF) is being recognized as an important marker of health and functioning, it is currently not routinely assessed in daily clinical practice. There is an urgent need for a simple and feasible exercise test that can validly and reliably estimate an individual’s CRF. The Steep Ramp Test (SRT) is such a practical short-time exercise test (work rate increments of 25 W/10 seconds, so the test phase will only take up to 4 minutes) on a cycle ergometer, that does not require expensive equipment or specialized knowledge, and has been found able to validly and reliably estimate an individual’s CRF. Although the SRT is already frequently used in the Netherlands to evaluate CRF, sex- and age-specific reference values for adults and elderly are lacking thus far, which seriously limits the interpretation of test results.