This chapter discusses the sharing economy in the Netherlands, focussing on shared mobility and gig work platforms. The Netherlands has been known as one of the pioneers in the sharing economy. Local initiatives emerged at the beginning of the 2010s. International players such as Uber, UberPop, and Airbnb followed soon after. Initially, the sharing economy was greeted with a sense of optimism, as it was thought to contribute to social cohesion and sustainability. Over the last few years, the debate has shifted to the question of how public values can be safeguarded or stimulated. In this regard, shared mobility is hoped to contribute to more sustainable transport. In the gig economy, scholars and labour representatives fear a further flexibilisation of labour; others see opportunities for economic growth.
DOCUMENT
This lessons learned report gives an overview of the output and results of the first phase of the REDUCES project. The introduction states the relevance of combining a policy approach with business model analysis, and defines the objectives. Next, an overview is given of circular economy good business practices in the regions involved. Examining these business practices helped to define the regional needs for circular economy policy. This business approach proved to be a solid base for developing regional circular economy action plans, the last chapter of this report.
DOCUMENT
Are the so-called “new” business models focused on “sharing” actually promoting new behaviour or are they simply using old behaviour of the provider/consumer in a new technological environment? Are the new tech companies in the sharing economy with their “new” business models grabbing too much power, unnoticeably?
DOCUMENT
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
Het doel van dit interdisciplinaire SIA KIEM project Fluïde Eigenschap in de Creatieve Industrie is te onderzoeken of en hoe gedeelde vormen van eigenaarschap in de creatieve industrie kunnen bijdragen aan het creëren van een democratischer en duurzamer economie, waarin ook het MKB kan participeren in digitale innovatie. Het project geeft een overzicht van beschikbare vormen van (gedeeld) eigenaarschap, hun werking en hoe deze creatieve professionals kunnen ondersteunen bij de transitie naar de platformeconomie. Dit wordt toegepast op een concrete case, dat van een digitale breimachine. Naast het leveren van een goede praktijk, moet het project leiden tot een groter internationaal onderzoeksvoorstel over Fluid Ownership in the Creative Industry, dat dieper ingaat op de beschikbare eigendomsoplossingen en hoe deze waarde zullen creëren voor de creatieve professional.