Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
In this article we examine the experiences of the first and second author who have changed themselves to become newly attuned to the sun, or who have “become solar”. Motivated by calls to approach solar design in novel, less technocratic ways, we reflect on their one-year journey to gain a new relationship with solar energy as an explicitly more-than-human design (MTHD) approach. We argue that their perception of solar energy progressively worked to decentre them as human actors in this new solar-energy arrangement, revealing other nonhuman actors at play, instigating situations of care and attention to those nonhumans and ultimately guiding them towards what it means to be solar. For solar design, we see this approach as creating a new lens for solar designers to draw from. For MTHD, we see this acting as a practical example for designers seeking to begin transforming themselves in their own practice by taking initial steps towards a MTHD approach.
DOCUMENT
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
DOCUMENT
Designing with the Sun is a KIEM-GoCI explorative research project on the theme Energy Transition and Sustainability. The project is aimed at network and agenda building and design research that explores new (cultural) practices of renewable energy consumption, based on a shift from ‘energy blindness’ to ‘energy awareness’. Up until now the solar industry has been propelled forward by technical innovations, offering mostly pragmatic, economic benefits to consumers. Innovation in this field mostly concerns making solar panels more efficient and less costly. However, to succeed, the energy transition also needs new cultural practices. These practices should reflect the ways renewables are different from fossil fuels. For solar, this means using more direct solar energy, when the sun is there, and being able to adapt to periods of low energy. Currently, consumers are mostly ‘blind’ to the infrastructure behind fossil-based energy. However, for energy sources such as solar and wind ‘awareness’ of their availability becomes more important. What could such an awareness look or feel like? How can it be enacted? And how can a change in practice that is more attuned to availability be experienced positively? Solar companies see opportunities in using design to help build motivating practices and narratives within the solar field, enabling awareness through personal relationships between consumer and solar energy. However, the knowledge of how to get there is lacking. In a research-through-design trajectory, and together with partners from the Creative Industries, Designing with the Sun aims to explore new ways of relating citizens to solar energy. Ultimately, these insights should enable the newly emerging field of solar design to contribute to the emergence of more sustainable and rewarding energy awareness and practices.