The emergence of collaborative workspaces is a remarkable feature of contemporary cities. These spaces have appeared rapidly, catering for the locational needs of self-employed workers, start-ups and small-size companies. The objective of this paper is to provide an analysis of four categories of collaborative workspaces (accelerators, incubators, coworking spaces and FabLabs). For the case of Amsterdam, we conducted a website content analysis to assess how these spaces position and present themselves towards potential users. The empirical evidence shows that these spaces promise a variety of benefits, ranging from business development to access to social networks. This diversity illustrates the emergence of distinct work settings in an economic environment characterised by the need to work in a social environment that at the same time stimulates networking and collaboration.
PCK is seen as the transformation of content knowledge and pedagogical knowledge into a different type of knowledge that is used to develop and carry out teaching strategies. To gain more insight into the extent to which PCK is content specific, the PCK about more topics or concepts should be compared. However, researchers have rarely compared teachers’ concrete PCK about more than one topic. To examine the content dependency of PCK, we captured the PCK of sixteen experienced Dutch history teachers about two historical contexts (i.e. topics) using interviews and Content Representation questionnaires. Analysis reveals that all history teachers’ PCK about the two contexts overlaps, although the degree of overlap differs. Teachers with relatively more overlap are driven by their overarching subject related goals and less by the historical context they teach. We discuss the significance of these outcomes for the role of teaching orientation as a part of PCK.
Major news outlets increasingly use immersive techniques in their journalistic productions. The idea is that, through the application of immersive technologies, the news consumer can engage with and be part of the story. However, we do not know, to what extent this promise is actually fulfilled in productions currently accessible to news audiences. This study uses a multi-step approach to fill this knowledge gap.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.
The project aim is to improve collusion resistance of real-world content delivery systems. The research will address the following topics: • Dynamic tracing. Improve the Laarhoven et al. dynamic tracing constructions [1,2] [A11,A19]. Modify the tally based decoder [A1,A3] to make use of dynamic side information. • Defense against multi-channel attacks. Colluders can easily spread the usage of their content access keys over multiple channels, thus making tracing more difficult. These attack scenarios have hardly been studied. Our aim is to reach the same level of understanding as in the single-channel case, i.e. to know the location of the saddlepoint and to derive good accusation scores. Preferably we want to tackle multi-channel dynamic tracing. • Watermarking layer. The watermarking layer (how to embed secret information into content) and the coding layer (what symbols to embed) are mostly treated independently. By using soft decoding techniques and exploiting the “nuts and bolts” of the embedding technique as an extra engineering degree of freedom, one should be able to improve collusion resistance. • Machine Learning. Finding a score function against unknown attacks is difficult. For non-binary decisions there exists no optimal procedure like Neyman-Pearson scoring. We want to investigate if machine learning can yield a reliable way to classify users as attacker or innocent. • Attacker cost/benefit analysis. For the various use cases (static versus dynamic, single-channel versus multi-channel) we will devise economic models and use these to determine the range of operational parameters where the attackers have a financial benefit. For the first three topics we have a fairly accurate idea how they can be achieved, based on work done in the CREST project, which was headed by the main applicant. Neural Networks (NNs) have enjoyed great success in recognizing patterns, particularly Convolutional NNs in image recognition. Recurrent NNs ("LSTM networks") are successfully applied in translation tasks. We plan to combine these two approaches, inspired by traditional score functions, to study whether they can lead to improved tracing. An often-overlooked reality is that large-scale piracy runs as a for-profit business. Thus countermeasures need not be perfect, as long as they increase the attack cost enough to make piracy unattractive. In the field of collusion resistance, this cost analysis has never been performed yet; even a simple model will be valuable to understand which countermeasures are effective.