Purpose: This is a position paper describing the elements of an international framework for assistive techhnology provision that could guide the development of policies, systems and service delivery procedures across the world. It describes general requirements, quality criteria and possible approaches that may help to enhance the accessibility of affordable and high quality assistive technology solutions. Materials and methods: The paper is based on the experience of the authors, an analysis of the existing literature and the inputs from many colleagues in the field of assistive technology provision. It includes the results of discussions of an earlier version of the paper during an international conference on the topic in August 2017. Results and conclusion: The paper ends with the recommendation to develop an international standard for assistive technology provision. Such a standard can have a major impact on the accessibility of AT for people with disabilities. The paper outlines some the key elements to be included in a standard.
Modern engineering systems are complex socio-technical structures with a mission to offer services of high quality, while in parallel ensuring profitability for their owners. However, practice has shown that accidents are inevitable, and the need for the use of systems-theoretic tools to support safety-driven design and operation has been acknowledged. As indicated in accident investigation reports, the degradation of risk situation awareness (SA) usually leads to safety issues. However, the literature lacks a methodology to compare existing systems with their ideal composition, which is likely to enhance risk SA. To fill this gap, the risk SA provision (RiskSOAP) is a comparison-based methodology and goes through three stages: (1) determine the desired/ideal system composition, (2) identify the as-is one(s), (3) employ a comparative strategy to depict the distance between the compared units. RiskSOAP embodies three methods: STPA (System Theoretic Process Analysis), EWaSAP (Early Warning Sign Analysis) and dissimilarity measures. The practicality, applicability and generality of RiskSOAP is demonstrated through its application to three case studies. The purpose of this work is to suggest the RiskSOAP indicator as a measure for safety in terms of the gap between system design and operation, thus increasing system’s risk SA. RiskSOAP can serve as a criterion for planning system modifications or selecting between alternative systems, and can support the design, development, operation and maintenance of safe systems.