Introduction: The association between obesity and outcome in critical illness is unclear. Since the amount of visceral adipose tissue(VAT) rather than BMI mediates the health effects of obesity we aimed to investigate the association between visceral obesity, BMI and 90-day mortality in critically ill patients. Method: In 555 critically ill patients (68% male), the VAT Index(VATI) was measured using Computed Tomography scans on the level of vertebra L3. The association between visceral obesity, BMI and 90-day mortality was investigated using univariable and multivariable analyses, correcting for age, sex, APACHE II score, sarcopenia and muscle quality. Results: Visceral obesity was present in 48.1% of the patients and its prevalence was similar in males and females. Mortality was similar amongst patients with and without visceral obesity (27.7% vs 24.0%, p = 0.31). The corrected odds ratio of 90-day mortality for visceral obesity was 0.667 (95%CI 0.424–1.049, p = 0.080). Using normal BMI as reference, the corrected odds ratio for overweight was 0.721 (95%CI 0.447–1.164 p = 0.181) and for obesity 0.462 (95%CI 0.208–1.027, p = 0.058). Conclusion: No significant association of visceral obesity and BMI with 90-day mortality was observed in critically ill patients, although obesity and visceral obesity tended to be associated with improved 90-day mortality.
DOCUMENT
Background & aims: Optimal nutritional support during the acute phase of critical illness remains controversial. We hypothesized that patients with low skeletal muscle area and -density may specifically benefit from early high protein intake. Aim of the present study was to determine the association between early protein intake (day 2–4) and mortality in critically ill intensive care unit (ICU) patients with normal skeletal muscle area, low skeletal muscle area, or combined low skeletal muscle area and -density. Methods: Retrospective database study in mechanically ventilated, adult critically ill patients with an abdominal CT-scan suitable for skeletal muscle assessment around ICU admission, admitted from January 2004 to January 2016 (n = 739). Patients received protocolized nutrition with protein target 1.2–1.5 g/kg/day. Skeletal muscle area and -density were assessed on abdominal CT-scans at the 3rd lumbar vertebra level using previously defined cut-offs. Results: Of 739 included patients (mean age 58 years, 483 male (65%), APACHE II score 23), 294 (40%) were admitted with normal skeletal muscle area and 445 (60%) with low skeletal muscle area. Two hundred (45% of the low skeletal muscle area group) had combined low skeletal muscle area and -density. In the normal skeletal muscle area group, no significant associations were found. In the low skeletal muscle area group, higher early protein intake was associated with lower 60-day mortality (adjusted hazard ratio (HR) per 0.1 g/kg/day 0.82, 95%CI 0.73–0.94) and lower 6-month mortality (HR 0.88, 95%CI 0.79–0.98). Similar associations were found in the combined low skeletal muscle area and -density subgroup (HR 0.76, 95%CI 0.64–0.90 for 60-day mortality and HR 0.80, 95%CI 0.68–0.93 for 6-month mortality). Conclusions: Early high protein intake is associated with lower mortality in critically ill patients with low skeletal muscle area and -density, but not in patients with normal skeletal muscle area on admission. These findings may be a further step to personalized nutrition, although randomized studies are needed to assess causality.
DOCUMENT
BACKGROUND: Prognostic assessments of the mortality of critically ill patients are frequently performed in daily clinical practice and provide prognostic guidance in treatment decisions. In contrast to several sophisticated tools, prognostic estimations made by healthcare providers are always available and accessible, are performed daily, and might have an additive value to guide clinical decision-making. The aim of this study was to evaluate the accuracy of students', nurses', and physicians' estimations and the association of their combined estimations with in-hospital mortality and 6-month follow-up.METHODS: The Simple Observational Critical Care Studies is a prospective observational single-center study in a tertiary teaching hospital in the Netherlands. All patients acutely admitted to the intensive care unit were included. Within 3 h of admission to the intensive care unit, a medical or nursing student, a nurse, and a physician independently predicted in-hospital and 6-month mortality. Logistic regression was used to assess the associations between predictions and the actual outcome; the area under the receiver operating characteristics (AUROC) was calculated to estimate the discriminative accuracy of the students, nurses, and physicians.RESULTS: In 827 out of 1,010 patients, in-hospital mortality rates were predicted to be 11%, 15%, and 17% by medical students, nurses, and physicians, respectively. The estimations of students, nurses, and physicians were all associated with in-hospital mortality (OR 5.8, 95% CI [3.7, 9.2], OR 4.7, 95% CI [3.0, 7.3], and OR 7.7 95% CI [4.7, 12.8], respectively). Discriminative accuracy was moderate for all students, nurses, and physicians (between 0.58 and 0.68). When more estimations were of non-survival, the odds of non-survival increased (OR 2.4 95% CI [1.9, 3.1]) per additional estimate, AUROC 0.70 (0.65, 0.76). For 6-month mortality predictions, similar results were observed.CONCLUSIONS: Based on the initial examination, students, nurses, and physicians can only moderately predict in-hospital and 6-month mortality in critically ill patients. Combined estimations led to more accurate predictions and may serve as an example of the benefit of multidisciplinary clinical care and future research efforts.
DOCUMENT