Fields neighboring the disciplines of kinesiology and sports science have called for more interdisciplinary work, including the adoption of critical approaches to research. This scoping review explored the degree to which critically-aligned research has developed within these disciplines. The goal was to identify who this research studied, what methods were used, and which theoretical and conceptual frameworks were adopted. Publications between 2010-2022 in six top kinesiology and sports science journals using four databases were searched using keywords to identify critically-aligned research. A multi-step screening process was used to identify and sort articles that adequately fit the criteria of critically-aligned research. The scoping review identified 5666 entries of which 3300 were unique publications. 76 articles were assessed to be critically-aligned. Four themes regarding demographics emerged: Geographic area, gender, race/ethnicity/indigeneity, and inequality/inequity. Regarding methodology, three major theoretical and conceptual frameworks emerged: ecological, socio-economic, and cultural. Overall, a relatively small number of studies fit our search criteria, suggesting that critically-aligned research remains at the margins of the disciplines. For the studies that were critically-aligned, they often centered the Global North and were inconsistent in their application of categories such as race, ethnicity, inequality and equity. These studies were diverse in their methodological approach while relying on ecological, socio-economic, and cultural frameworks. To heed the calls for a more interdisciplinary approach, and to advance the disciplines more generally, kinesiology and sports science should expand their adoption of critical approaches to research.
MULTIFILE
Purpose: The aim of this study was to develop practical recommendations for physiotherapy for survivors of critical illness after hospital discharge. Methods: A modified Delphi consensus study was performed. A scoping literature review formed the basis for three Delphi rounds. The first round was used to gather input from the panel to finalize the survey for the next two rounds in which the panel was asked to rank each of the statements on an ordinal scale with the objective to reach consensus. Consensus was defined as a SIQR of ≤ 0.5. Ten Dutch panelists participated in this study: three primary care physiotherapists, four intensive care physiotherapists, one occupational therapist, one ICU-nurse and one former ICU-patient. All involved professionals have treated survivors of critical illness. Our study was performed in parallel with an international Delphi study with hospital-based health-care professionals and researchers. Results: After three Delphi rounds, consensus was reached on 95.5% of the statements. This resulted in practical recommendations for physiotherapy for critical illness survivors in the primary care setting. The panel agreed that the handover should include information on 14 items. Physiotherapy treatment goals should be directed toward improvement of aerobic capacity, physical functioning, activities in daily living, muscle strength, respiratory and pulmonary function, fatigue, pain, and health-related quality of life. Physiotherapy measurements and interventions to improve these outcomes are suggested. Conclusion: This study adds to the knowledge on post-ICU physiotherapy with practical recommendations supporting clinical decision-making in the treatment of survivors of critical illness after hospital discharge.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.