Densely populated areas are major sources of air, soil and water pollution. Agriculture, manufacturing, consumer households and road traffic all have their share. This is particularly true for the country featured in this paper: the Netherlands. Continuous pollution of the air and soil manifests itself as acification, decalcification and eutrofication. Biodiversity becomes lower and lower in nature areas. Biological farms are also under threat. In case of mobility, local air pollution may have a huge health impact. Effective policy is called for, after high courts blocked construction projects, because of foreseen building- and transport-related NOx emissions. EU law makers are after Dutch governments, because these favoured economics and politics over environmental and liveability concerns. But, people in the Netherlands are strongly divided. The latest provincial elections were dominated by environmental concerns, next to many socio-economic issues. NOx and CO2 emissions by passenger cars are in focus. Technical means and increasing fuel economy norms strongly reduced NOx emissions to a still too high level. A larger number of cars neutralized a technological reduction of CO2 emissions. The question is: What would be the impact of a drastic mandatory reduction in CO2, NOx, and PM10 emissions on car ownership and use in the Netherlands? The authors used literature, scenario analysis and simulation modelling to answer this question. Electric mobility could remove these emissions. Its full impact will only be achieved if the grid-mix, which is still dominated by fossil fuels, becomes green(er), which is a gradual, long-term, process. EVs compete with other consumers of electricity, as many other activities, such as heating, are also electrifying. With the current grid-mix, it is inevitable that the number of km per vehicle per year is reduced to reach the scenario targets (−25% resp. −50% CO2 emissions by cars). This calls for an individual mobility budget per car user.
LINK
Positive Energy Districts (PEDs) have the potential of accelerating the decarbonization of urban areas and promoting scalability between cities. The development and real-world implementation of such innovative concepts can be enhanced through urban energy modelling. However, assessing PEDs can be challenging, and information on this topic is scarce and fragmented. The main contribution of this paper is collecting and analyzing challenges and limitations of energy modelling software for assessing PEDs through five case studies in Italy, Spain, The Netherlands, Denmark and Canada. Case studies are assessed first from a modelling approach, then the main identified challenges and limitations of modelling tools for PEDs are discussed, and finally, various ongoing trends and research needs in this field are suggested.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.
Possibly, the aviation sector’s decarbonization challenge (see Dutch knowledge key in international climate study for tourism | CELTH) has profound implications for the ability of aviation-de-pendent outbound tour operators to attract capital and with that their ability to maintain or trans-form their current business portfolio (understood here as the current product offers and approximate carbon footprints, business models, and ownership structures present in this economic do-main). Knowledge about these (possible) investment risks and their business and policy implications is lacking. This project therefore addresses this knowledge gap by means of the following research questions.1. What is the current business portfolio of Dutch outbound tour operators?a. To what extend do Dutch outbound tour operators depend on aviation in terms of product offer and turnover?b. What is the relative carbon footprint share of aviation-based products compared to the total outbound product offer and turnover of Dutch outbound tour operators?2. What are investment risks of this business portfolio as indicated by investors?a. How do investors evaluate investment risks in relation to climate change mitigation and de-carbonisation?b. What are investment risks of the business portfolio of Dutch outbound tour operators?c. What are the reflections on and implications of these investment risks from the perspective of policymakers and tour operators?