Potato cyst nematodes (PCN) are in the Northern Netherlands and the Weser-Ems Region in Germany a major issue for farmers. The yearly average damage by PCN is about 100 Euros/hectare for farmers. Infestations of potato cyst nematodes can be controlled in a sustainable way by proper potato variety selection. Potato varieties vary in the degree of tolerance and resistance to PCN. However, this knowledge is used by only a small fraction of the farmers. The AGROBIOKON project, which is funded by the INTERREG EDR-region, the Landwirtschaftskammer Niedersachsen and the Dutch farmers association, have developed a decision support system for potato variety selection based upon population dynamic models for PCN: OPTIRas. The scientific principles and the model behind the decision support system will be presented. The model will be applied to PCN field experiments in the Weser-Ems region. Experience of using this decision support system in farmer study groups in the Netherlands and Germany will be shared.
Cybersecurity threat and incident managers in large organizations, especially in the financial sector, are confronted more and more with an increase in volume and complexity of threats and incidents. At the same time, these managers have to deal with many internal processes and criteria, in addition to requirements from external parties, such as regulators that pose an additional challenge to handling threats and incidents. Little research has been carried out to understand to what extent decision support can aid these professionals in managing threats and incidents. The purpose of this research was to develop decision support for cybersecurity threat and incident managers in the financial sector. To this end, we carried out a cognitive task analysis and the first two phases of a cognitive work analysis, based on two rounds of in-depth interviews with ten professionals from three financial institutions. Our results show that decision support should address the problem of balancing the bigger picture with details. That is, being able to simultaneously keep the broader operational context in mind as well as adequately investigating, containing and remediating a cyberattack. In close consultation with the three financial institutions involved, we developed a critical-thinking memory aid that follows typical incident response process steps, but adds big picture elements and critical thinking steps. This should make cybersecurity threat and incident managers more aware of the broader operational implications of threats and incidents while keeping a critical mindset. Although a summative evaluation was beyond the scope of the present research, we conducted iterative formative evaluations of the memory aid that show its potential.
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.