In flexible education, recommender systems that support course selection, are considered a viable means to help students in making informed course selections, especially where curricula offer greater flexibility. However, these recommender systems present both potential benefits and looming risks, such as overdependence on technology, biased recommendations, and privacy issues. User control mechanisms in recommender interfaces (or algorithmic affordances) might offer options to address those risks, but they have not been systematically studied yet. This paper presents the outcomes of a design session conducted during the INTERACT23 workshop on Algorithmic Affordances in Recommender Interfaces. This design session yielded insights in how the design of an interface, and specifically the algorithmic affordances in these interfaces, may address the ethical risks and dilemmas of using a recommender in such an impactful context by potentially vulnerable users. Through design and reflection, we discovered a host of design ideas for the interface of a flexible education interface, that can serve as conversation starters for practitioners implementing flexible education. More research is needed to explore these design directions and to gain insights on how they can help to approximate more ethically operating recommender systems.
LINK
Deze casestudie geeft inzicht in verschillende soorten kennis die kenmerkend zijn voor applied design research. Er wordt onderscheid gemaakt tussen kennis over de huidige situatie, over wenselijke alternatieven en over effectieve oplossingen om daar te komen. Ofwel, kennis hoe het is, kennis over hoe het kan zijn en kennis over hoe het zal zijn als we effectieve oplossingen toepassen. Elk van deze soorten kennis heeft andere kwaliteitscriteria.
DOCUMENT
Het lectoraat Co-Design van Hogeschool Utrecht doet met een systemisch-inclusieve ontwerpende aanpak praktijkgericht onderzoek, om complexe maatschappelijke vraagstukken te helpen oplossen. Binnen die onderzoeken stellen we vragen over het ontwerpproces en de mensen die daarbij betrokken zijn. Hoe kun je goed co-designen in de weerbarstige werkelijkheid? Wat kan helpen in die ontwerpende aanpak? Hoe kunnen mensen die niet zijn opgeleid als ontwerpers volwaardig meedoen in het ontwerpproces, en wat hebben zij daarvoor nodig aan ontwerpend vermogen? De kennis over ontwerpend vermogen die we de afgelopen vier jaar hebben opgedaan, delen we in dit boekje. We hebben dat proces getekend en beschreven als een reisverhaal van Co, die ons meeneemt op een boot over een rivier, door stroomversnellingen en langs landschappen. Met bijdragen van: Marry Bassa, Anita Cremers, Tanja Enninga, Anita van Essen, Christa van Gessel, Berit Godfroij, Joep Kuijper, Remko van der Lugt, Caroline Maessen, Lenny van Onselen, Dirk Ploos van Amstel, Karlijn van Ramshorst, Carolijn Schrijver, Fenne Verhoeven, Danielle Vossebeld, Rosa de Vries
DOCUMENT
In higher education, design thinking is often taught as a process. Yet design cognition resides in action and design practices. Dewey’s pragmatism offers a solid epistemology for design thinking. This paper describes a design research whereby Dewey’s inquiry served as the foundation for educating students. Three extensive educational case studies are presented whereby a design inquiry was introduced and became part of the curricula. It was found that students and coaches struggled with doubts experienced as a result of the co-evolution of problem and solution, means and ends. Four coping mechanisms were observed: (1) focus on problems, risking analysis paralysis; (2) focus on creative problem-solving, risking unsubstantiated design; (3) focus on means, risking fixation; and (4) focus on future ends, risking hanging on to a dream. By establishing a joint practice and a community of learnersthrough show-andshare sessions, the students establish solid ground.
MULTIFILE
In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
This investigation explores relations between 1) a theory of human cognition, called Embodied Cognition, 2) the design of interactive systems and 3) the practice of ‘creative group meetings’ (of which the so-called ‘brainstorm’ is perhaps the best-known example). The investigation is one of Research-through-Design (Overbeeke et al., 2006). This means that, together with students and external stakeholders, I designed two interactive prototypes. Both systems contain a ‘mix’ of both physical and digital forms. Both are designed to be tools in creative meeting sessions, or brainstorms. The tools are meant to form a natural, element in the physical meeting space. The function of these devices is to support the formation of shared insight: that is, the tools should support the process by which participants together, during the activity, get a better grip on the design challenge that they are faced with. Over a series of iterations I reflected on the design process and outcome, and investigated how users interacted with the prototypes.
DOCUMENT
From the article This paper describes a joint effort by two educational and scientific institutes, the HU University of Applied Sciences and Utrecht University, in designing a BPM course that not only transfers theoretical knowledge but lets students also experience real life BPM-systems and implementation issues. We also describe the implementation of the developed module with an indication of its success: it is now running for the fifth time, and although there continue to be points for improvement, over the years several scientific papers in the BPM domain resulted from the course, as well as a reasonable amount of students started their final thesis project in the BPM-domain.
MULTIFILE
The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
DOCUMENT
The Future of Design Education working group on sustainability developed recommendations for integrating sustainability into higher education design curricula. The recommendations provide a foundation for design instruc- tion, using well-established evidence-based tools, methods, and mindsets that apply to professional practice and support designers as advocates for environmental and social responsibility. The document identifies core ideas for sustainable design, organized under a set of topics. These topics include sustainability fundamentals; circular economy; whole systems thinking; sus- tainable innovation strategies; impact assessment, and laws and standards; and communication, collaboration, and leadership. A summary table cap- tures each idea, along with corresponding discussion and learning outcomes (things students should know and do). Recommendations are tailored to three levels of study: for all design students, students expecting to practice in sustainable design, and students in elective or advanced study. Resources for such study are also included.
DOCUMENT
This book provides insight into an ambitious project to re-invent the educational method practiced at NHL Stenden. The predecessors used different approaches to the delivery of education. One of them used Competency-Based Education, whilst the other practiced Problem-Based Learning. The choice to combine the advantages of both methods, as well as to develop an entirely new concept that provided a better response to the fast and ever-increasing pace of changes in the workplace, was made by both institutions together. This approach was called Design-Based Education (DBE). Given the significant changes required of stakeholders to facilitate learning according to the new DBE approach, it is important to take stock of what these changes mean in terms of teaching and learning and to ascertain from early steps how everybody can stay, or step, on board.
DOCUMENT