The Regional Development Effects Module (RDEM) will map the impact of migration on regional development seen on different variables. To construct the RDEM we have to:1. develop a typology of regions, based on the impact that mobility has on its economic, social and cultural development; and2. detect the causal linkages between regional mobility on the one hand and regional development on the other.In our presentation we will focus on the process to determine relevant regional development indicators that will help in the collection and analysis of relevant data for the period 2010-2022 on NUTS 2 and 3 level. Partners in our project will additionally focus on:1. Analysis of regional networks estimated from Facebook2. Building typology regional development3. Longitudinal causal analysis of mobility4. Integration of case studiesFinally, this will result in:• Online atlas of mobility & development typologies• Report Causal Analysis of mobility development
TheUniversity of Twente, SaxionUniversityofAppliedSciences, ROCofTwente(vocationaleducation), centre of expertise TechYourFuture and the H2Hub Twente, in which various regional hydrogen interested corporations are involved, work together to shape a learning community (LC) for the development of innovative hydrogen technology. The cooperation between company employees, researchers and students provides a means to jointly work on solutions for real-life problems within the energy transition. This involves a cross-chain collaboration of technical programs, professorships and (field) experts, supported by human capital specialists. In the LC, a decentralized hydrogen production unit with storage of green hydrogen is designed and built. The main question for this research is: how can the design and construction process of an alkaline electrolyzer be arranged in a challenge based LC in which students, company employees (specialists) and researchers from the three educational institutions can learn, innovate, build-up knowledge and benefit? In this project the concept of a LC is developed and implemented in collaboration with companies and knowledge institutions at different levels. The concrete steps are described below: 1. Joint session between Human Resource and Development (HRD) specialists and engineers/researchers to explore the important factors for a LC. The results of this session will be incorporated into a blueprint for the LC by the human capital specialists. 2. The project is carried out according to the agreements of the blueprint. The blueprint is continuously updated based on the periodic reflections and observed points for improvement. 3. Impact interviews and periodic reflection review the proceeding of the LC in this engineering process. The first impact interview reveals that the concept of the LC is very beneficial for companies. It increases overall knowledge on hydrogen systems, promotes cooperation and connection with other companies and aids to their market proposition as well. Students get the opportunity to work in close contact with multiple company professionals and build up a network of their own. Also the cooperation with students from different disciplines broadens their view as a professional, something which is difficult to achieve in a mono-disciplinary project.
MULTIFILE
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
Energy transition is key to achieving a sustainable future. In this transition, an often neglected pillar is raising awareness and educating youth on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. The Master Energy for Society, and particularly the course “Society in Transition”, aims at providing a first overview on the urgency and complexities of the energy transition. However, educating on the energy transition brings challenges: it is a complex topic to understand for students, especially when they have diverse backgrounds. In the last years we have seen a growing interest in the use of gamification approaches in higher institutions. While most practices have been related to digital gaming approaches, there is a new trend: escape rooms. The intended output and proposed innovation is therefore the development and application of an escape room on energy transition to increase knowledge and raise motivation among our students by addressing both hard and soft skills in an innovative and original way. This project is interdisciplinary, multi-disciplinary and transdisciplinary due to the complexity of the topic; it consists of three different stages, including evaluation, and requires the involvement of students and colleagues from the master program. We are confident that this proposed innovation can lead to an improvement, based on relevant literature and previous experiences in other institutions, and has the potential to be successfully implemented in other higher education institutions in The Netherlands.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.