Review: With great interest we have read the paper “Pregnancy Screening before Diagnostic Radiography in Emergency Department; an Educational Review” by A.I. Abushouk et al. (1). We agree with the authors that unnecessary fetal radiation exposure should be avoided and that pregnancy screening can be a means to accomplish this. However, in their paper the authors suggest in several instances that radiological imaging during pregnancy can lead to teratogenic effects. In the Abstract it is stated: “Radiation exposure during pregnancy may have serious teratogenic effects to the fetus. Therefore, checking the pregnancy status before imaging women of child bearing age can protect against these effects.”, and in the Introduction: “Therefore, checking the pregnancy status before imaging women of child bearing age can protect against radiation teratogenic effects.” We strongly disagree with these statements: common radiological imaging will usually not give rise to fetal radiation doses high enough to lead to teratogenesis. The statements in the paper may lead to unnecessary worrying of pregnant women and it may discourage themfrom undergoing medically necessary radiological examinations.
DOCUMENT
Purpose: This is a position paper describing the elements of an international framework for assistive techhnology provision that could guide the development of policies, systems and service delivery procedures across the world. It describes general requirements, quality criteria and possible approaches that may help to enhance the accessibility of affordable and high quality assistive technology solutions. Materials and methods: The paper is based on the experience of the authors, an analysis of the existing literature and the inputs from many colleagues in the field of assistive technology provision. It includes the results of discussions of an earlier version of the paper during an international conference on the topic in August 2017. Results and conclusion: The paper ends with the recommendation to develop an international standard for assistive technology provision. Such a standard can have a major impact on the accessibility of AT for people with disabilities. The paper outlines some the key elements to be included in a standard.
DOCUMENT
Abstract gepubliceerd in Elsevier: Introduction: Recent research has identified the issue of ‘dose creep’ in diagnostic radiography and claims it is due to the introduction of CR and DR technology. More recently radiographers have reported that they do not regularly manipulate exposure factors for different sized patients and rely on pre-set exposures. The aim of the study was to identify any variation in knowledge and radiographic practice across Europe when imaging the chest, abdomen and pelvis using digital imaging. Methods: A random selection of 50% of educational institutes (n ¼ 17) which were affiliated members of the European Federation of Radiographer Societies (EFRS) were contacted via their contact details supplied on the EFRS website. Each of these institutes identified appropriate radiographic staff in their clinical network to complete an online survey via SurveyMonkey. Data was collected on exposures used for 3 common x-ray examinations using CR/DR, range of equipment in use, staff educational training and awareness of DRL. Descriptive statistics were performed with the aid of Excel and SPSS version 21. Results: A response rate of 70% was achieved from the affiliated educational members of EFRS and a rate of 55% from the individual hospitals in 12 countries across Europe. Variation was identified in practice when imaging the chest, abdomen and pelvis using both CR and DR digital systems. There is wide variation in radiographer training/education across countries.
DOCUMENT
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
Pre-eclampsia (PE) is a common and severe pregnancy complication and is associated with substantial perinatal morbidity and mortality in mothers and infants. The disease is often characterized by a non-specific presentation which makes it challenging for physician to diagnose PE during regular pregnancy check-ups. To date, there are no diagnostic tests on the market for detection of PE early in pregnancy (first trimester). In this project, we will develop a platform to sensitively analyse calcium-binding proteins (CBPs) which will unlock the full potential of CBPs as predictive PE markers. The technology will also be applicable for other diseases (e.g., dementia and cancer) where CBPs are also known to play a key role in disease pathophysiology. We will develop with phage display antibodies that can recognize calcium binding to specific motifs in proteins. To this end we will synthesize peptide motifs with and without calcium to select antibodies that are specific for calcium bound proteins. These antibodies will be validated for their clinical use. For this goal we will use serum samples from the Improved studie (EU subsidised study) to determine if we can recognize pre-eclampsia in a very early stage. This knowledge can lead to a better treatment of pregnant women suffering from this disease and also will probably increase the well-being for the baby born and the development further in life.