Educational innovations often tend to fail, mainly because teachers and school principals do not feel involved or are not allowed to have a say. Angela de Jong's dissertation shows the importance of school principals and teachers leading 'collaborative innovation' together. Collaborative innovation requires a collaborative, distributed approach involving both horizontal and vertical working relationships in a school. Her research shows that teams with more distributed leadership have a more collaborative 'spirit' to improve education. Team members move beyond formal (leadership) roles, and work more collectively on school-wide educational improvement from intrinsic motivation. De Jong further shows that school principals seek a balance in steering and providing space. She distinguished three leadership patterns: Team Player, Key Player, Facilitator. Team players in particular are important for more collaborative innovation in a school. They balance between providing professional space to teachers (who look beyond their own classroom) and steering for strategy, frameworks, boundaries, and vision. This research took place in schools working with the program of Foundation leerKRACHT, a program implemented by more than a thousand schools (primary, secondary, and vocational education). The study recommends, towards school principals and teachers, and also towards trainers, policymakers, and school board members, to reflect more explicitly on their roles in collaborative innovation and talk about those roles.
As the economy becomes more globalized, a growing number of events are exerting an influence on activity and innovation globally in different fields. Therefore, we argue that "eventful cities" can act as important catalysts for eventfulness in other places as well. This article analyzes the case of the Sónar electronic music festival, an event that originated in Barcelona, Spain, but which now runs different editions in many cities worldwide. This empirical study of the innovation capacity of a cultural event examines how a locally based music festival has transformed itself by using the global "space of flows" to influence the local "space of places." The Sónar Festival has turned itself into a relational hub in a global cultural network, using stylistic innovations to link geographically dispersed nodes in order to create new products, open up new markets, and strengthen its own position as a global source of eventfulness.
MULTIFILE
Innovating physical products can be seen as systems engineering at a higher abstraction level. It spans multiple domains and focuses not on developing the product, but realising the complete innovation. In our new approach, we focus on the four most important domains of physical product innovation: market, technology, production and business. Technology Innovation Processes (TIP) is a newly developed, flexible and pragmatic data-informed decision approach that helps innovation managers to navigate through the early stages of a blue-ocean innovation process, where not much is known.
MULTIFILE
Lightweight, renewable origin, mild processing, and facile recyclability make thermoplastics the circular construction materials of choice. However, in additive manufacturing (AM), known as 3D printing, mass adoption of thermoplastics lags behind. Upon heating into the melt, particles or filaments fuse first in 2D and successively in 3D, realizing unprecedented geometrical freedom. Despite a scientific understanding of fusion, industrial consortium experts are still confronted with inferior mechanical properties of fused weld interfaces in reality. Exemplary is early mechanical failure in patient-specific and biodegradable medical devices based on Corbion’s poly(lactides), and more technical constructs based on Mitsubishi’s poly(ethylene terephthalate), PET. The origin lies in contradictory low rate of polymer diffusion and entangling, and too high rate of crystallization that is needed to compensate insufficient entangling. Knowing that Zuyd University in close collaboration with Maastricht University has eliminated these contradictory time-scales for PLA-based systems, Corbion and Mitsubishi contacted Zuyd with the question to address and solve their problem. In previous research it has been shown that interfacial co-crystallization of alternating depositioned opposite stereo-specific PLA grades resulted in strengthening of the interface. To promote mass adoption of thermoplastics AM industries, the innovation question has been phrased as follows: What is a technically scalable route to induce toughness in additively manufactured thermoplastics? High mechanical performance translates into an intrinsic brittle to tough transition of stereocomplex reinforced AM products, focusing on fused deposition modeling. Taking the professional request on biocompatibility, engineering performance and scalability into account, the strategies in lowering the yield stress and/or increasing the network strength comprise (i) biobased and biocompatible plasticizers for stereocomplexed poly(lactide), (ii) interfacial co-crystallization of intrinsically tough polyester based materials formulations, and (iii) in-situ interfacial transesterification of recycled PET formulations.