In recent years, drones have increasingly supported First Responders (FRs) in monitoring incidents and providing additional information. However, analysing drone footage is time-intensive and cognitively demanding. In this research, we investigate the use of AI models for the detection of humans in drone footage to aid FRs in tasks such as locating victims. Detecting small-scale objects, particularly humans from high altitudes, poses a challenge for AI systems. We present first steps of introducing and evaluating a series of YOLOv8 Convolutional Neural Networks (CNNs) for human detection from drone images. The models are fine-tuned on a created drone image dataset of the Dutch Fire Services and were able to achieve a 53.1% F1-Score, identifying 439 out of 825 humans in the test dataset. These preliminary findings, validated by an incident commander, highlight the promising utility of these models. Ongoing efforts aim to further refine the models and explore additional technologies.
MULTIFILE
The rapid implementation of large scale floating solar panels has consequences to water quality and local ecosystems. Environmental impacts depend on the dimensions, design and proportions of the system in relation to the size of the surface water, as well as the characteristics of the water system (currents, tidal effects) and climatic conditions. There is often no time (and budget) for thorough research into these effects on ecology and water quality. A few studies have addressed the potential impacts of floating solar panels, but often rely on models without validation with in situ data. In this work, water quality sensors continuously monitored key water quality parameters at two different locations: (i) underneath a floating solar park; (ii) at a reference location positioned in open water. An underwater drone was used to obtain vertical profiles of water quality and to collect underwater images. The results showed little differences in the measured key water quality parameters below the solar panels. The temperature at the upper layers of water was lower under the solar panels, and there were less detected temperature fluctuations. A biofouling layer on the floating structure was visible in the underwater images a few months after the construction of the park
The remarkable and continuous growth of the unmanned aircraft market has brought new safety related challenges, as those are recorded in various accident and incident reports. Although drones with an operating weight higher than 20-25Kgs are technologically advanced and often subject to standards (e.g., technical reliability, airspace management, licensing, certification), the regulatory framework for (ultra) light drones focuses almost exclusively on the limitations that the operator needs to consider. Thus, the protection from accidents seems to rely mostly on the competency of the operator to fly a drone safely, and his/her observance of the rules published by the respective authorities. In addition, the hazards lying in the interaction between an operator and a small drone have not been systematically studied. In this paper, we present (1) the first results from a System-Theoretic Process Analysis (STPA) based approach to the identification of hazards and safety requirements in small drone operations, and (2) an adaptation of the Risk Situation Awareness Provision Capability (RiskSOAP) methodology in order to quantify the differences amongst 4 drone models regarding the extent to which they fulfill the safety requirements identified through STPA. The results showed that the drones studied satisfy the safety requirements at low and moderate levels and they present high dissimilarities between them regarding the extent to which they meet the same safety requirements. Future work will include: (a) comparison of a larger sample of small drones against the safety requirements, as well as pairwise, and (b) assessment of the degree to which various regulatory frameworks worldwide address the safety requirements generated with STPA and assigned to the authority level.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Inleiding en praktijkvraag De groeiende wereldbevolking gecombineerd met de klimaatverandering zorgt voor een de noodzaak tot een duurzame voedselvoorziening (KIA missie Landbouw, voedsel & water). Een significante reductie van gewasbestrijdingsmiddelen is daarbinnen een belangrijke doelstelling. Robotica maakt als technologie motor van de precisielandbouw plant specifieke precisie-bestrijding mogelijk. Het projectconsortium onderzoekt een semiautonoom samenwerkend grond-luchtrobot platform voor de precisielandbouw. Projectdoelstelling De doelstelling van het project AGRobot Platform is dan ook: “Onderzoek de mogelijkheden van een semi-autonoom samenwerkend grond-lucht robotplatform voor de precisielandbouw”. De hoofddoelstelling wordt binnen dit project beantwoordt door de deliverables uit de volgende subdoelstellingen: 1. Case studie onderzoek naar de mogelijke voordelen van het grond-luchtrobotplatform 2. Onderzoek naar de benodigde technologieën voor een grond-luchtrobotplatform 3. Ontwikkelen van een eerste (mogelijk case-specifieke) demonstrator 4. Ontwikkelen van (nieuwe) samenwerkingsvormen. Vraagsturing & Netwerkvorming Riwo Engineering is een industriële automatiseeerder die met zijn grondrobots en control-besturingssytemen actief is in de veeteelt. DRONEXpert gebruikt hyperspectrale camera’s onder drones voor het bemeten van gewassen. Saxion mechatronica onderzoekt met de onderzoekslijn unmanned robotic systems hoe de nieuwste robotica technologieën systemen mogelijk maakt voor ongestructureerde omgevingen. De partners bezitten gezamenlijk een enorm netwerk (TValley, Space53, euRobotics) en klanten om via de case studies de kansen te achterhalen en te realiseren. Innovatie Nergens ter wereld is een samenwerkend grond-luchtrobot platform actief in de precisielandbouw. Voor OostNederland, met naast veel robotica kennis ook veel Agro-kennis, zal het project letterlijk de KIEM zijn voor nieuwe projecten waaruit de valorisatie kansen richting heel Europa gaan. Activiteitenplan & Projectorganisatie Het project wordt geleid door de lector Dr. Ir. D.A.Bekke en uitgevoerd door Abeje Mersha en Mark Reiling samen met het deelnemend MKB. Het project bestaat uit 4 werkpakketten die achtereenvolgens antwoordt geven op de gestelde subdoelstellingen. Aan elk werkpakket zijn deliverables gekoppeld.
Noord-Nederland telt ongeveer 70.000 ha akkerbouw, waarvan 14.000 ha pootaardappelen. De totale jaaromzet van de pootaardappelteelt bedraagt ongeveer 230 miljoen euro (exclusief de omzet van toeleverende en dienstverlenende bedrijven). Van alle productielanden samen, neemt Noord-Nederland met 23% van de wereldwijde export van gecertificeerd pootgoed een absolute toppositie in. Om deze toppositie te behouden, is continu aandacht voor productiviteit, duurzaamheid en kwaliteitsverbetering vereist. Bij de huidige bedrijfsomvang kan een geautomatiseerde gewasinspectie daarbij zeer behulpzaam zijn. Kwalitatief hoogwaardiger inspectie tegen lagere kosten kan de kwaliteit en de kostprijs van gewassen in de precisielandbouw verbeteren. Voor pootgoedtelers is het belangrijk te weten wat de kwaliteit van de plant is, in relatie met de gepote aardappel. Doelstelling is het verkrijgen van inzicht in de methoden, technieken en algoritmen die nodig zijn voor het automatisch bepalen van het opkomstgedrag van individuele aardappelplanten met behulp van low-cost drones. Koelhuis Bergmans stelt de akkervelden waar opnames van gemaakt worden beschikbaar. Ana Vita heeft veel ervaring in het ontwikkelen van nieuwe markten in de precisielandbouw. De NHL is in het bezit van een ROC-light ontheffing om met drones tot 4 kg te mogen vliegen. Tevens onderzoekt de NHL welke methoden, technieken en algoritmen gebruikt kunnen worden. Dit project levert een dataset met hierin periodiek opgenomen beelden van aardappelplanten, methodes voor het bepalen van individuele aardappelplantgroei en een beschrijving van de onderzoeksresultaten in de vorm van een (wetenschappelijke) paper.