In this paper, we focus on how the qualitative vocabulary of Dynalearn, which is used for describing dynamic systems, corresponds to the mathematical equations used in quantitative modeling. Then, we demonstrate the translation of a qualitative model into a quantitative model, using the example of an object falling with air resistance.
DOCUMENT
Damping constitutes a major source of uncertainty in dynamic analysis and an open issue to experimental and analytical research. After a thorough review of the current views and approaches existing in literature on damping and its appropriate modelling, this paper focuses on the implications of the available modelling options on analysis. As result of a series of considerations, a damping modelling solution for nonlinear dynamic analyses of cantilever RC walls is suggested within the frame of Direct Displacement-Based Design, supported by comparative analyses on wall structures.
LINK
An important issue in the field of motion control of wheeled mobile robots is that the design of most controllers is based only on the robot’s kinematics. However, when high-speed movements and/or heavy load transportation are required, it becomes essential to consider the robot dynamics as well. The control signals generated by most dynamic controllers reported in the literature are torques or voltages for the robot motors, while commercial robots usually accept velocity commands. In this context, we present a velocity-based dynamic model for differential drive mobile robots that also includes the dynamics of the robot actuators. Such model has linear and angular velocities as inputs and has been included in Peter Corke’s Robotics Toolbox for MATLAB, therefore it can be easily integrated into simulation systems that have been built for the unicycle kinematics. We demonstrate that the proposed dynamic model has useful mathematical properties. We also present an application of such model on the design of an adaptive dynamic controller and the stability analysis of the complete system, while applying the proposed model properties. Finally, we show some simulation and experimental results and discuss the advantages and limitations of the proposed model.
DOCUMENT
Dynamic stall phenomena bring risk for negative damping and instability in wind turbine blades. It is crucial to model these phenomena accurately to reduce inaccuracies in predicting design driving (fatigue) loads. Inaccuracies in currentdynamic stall models may be due to the facts that they are not properly designed for high angles of attack, and that they do not 10 specifically describe vortex shedding behaviour. The Snel second order dynamic stall model attempts to explicitly model unsteady vortex shedding. This model could therefore be a valuable addition to DNV GL’s turbine design software Bladed. In this thesis the model has been validated with oscillating airfoil experiments and improvements have been proposed for reducing inaccuracies. The proposed changes led to an overall reduction in error between the model and experimental data. Furthermore the vibration frequency prediction improved significantly. The improved model has been implemented in Bladed and tested 15 against small scale turbine experiments at parked conditions. At high angles of attack the model looks promising for reducing mismatches between predicated and measured (fatigue) loading. Leading to possible lower safety factors for design and more cost efficient designs for future wind turbines.
DOCUMENT
Crime script analysis as a methodology to analyse criminal processes is underdeveloped. This is apparent from the various approaches in which scholars apply crime scripting and present their cybercrime scripts. The plethora of scripting methods raise significant concerns about the reliability and validity of these scripting studies. In this methodological paper, we demonstrate how object-oriented modelling (OOM) could address some of the currently identified methodological issues, thereby refining crime script analysis. More specifically, we suggest to visualise crime scripts using static and dynamic modelling with the Unified Modelling Language (UML) to harmonise cybercrime scripts without compromising their depth. Static models visualise objects in a system or process, their attributes and their relationships. Dynamic models visualise actions and interactions during a process. Creating these models in addition to the typical textual narrative could aid analysts to more systematically consider, organise and relate key aspects of crime scripts. In turn, this approach might, amongst others, facilitate alternative ways of identifying intervention measures, theorising about offender decision-making, and an improved shared understanding of the crime phenomenon analysed. We illustrate the application of these models with a phishing script.
MULTIFILE
In today’s intellectual capital literature, we see a shift from identifying intangibles towards understanding the dynamics of value creation. As it is not clear what “dynamic” stands for, the aim of this explorative and conceptual paper is to contribute to a better understanding of the dynamic dimension of IC. Based on a review of the early IC literature, the dynamic dimension (or dynamics) of intellectual capital seems to refer to the logic that value creation is the product of interaction between different types of (intangible) resources. As the idea of value creation through combination of knowledge resources is closely related to the New Growth Theory (Romer, 1990, 1994), this paper explores the New Growth Theory and its implications for the dynamic dimension of intellectual capital. Based on the exploration of the New Growth Theory, a conceptual model is presented in which the elements that constitute the dynamic dimension of intellectual capital are integrated. These elements are ideas, things, the process of knowledge creation, the process of continuous innovation, and institutions. The main conclusion of this paper is that the concept of knowledge is more closely related to the dynamic dimension of IC, than the concept of intellectual capital. Therefore, further research would probably benefit from approaching this topic from a knowledge management point of view. It is suggested that further research should focus on exploring the metaphors that contribute to a better understanding of the dynamics of IC, on the contribution that ideas can make to increase the effectiveness of knowledge management, and finally on the institutional arrangements that support the process of knowledge creation and innovation.
DOCUMENT
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE
The dynamic inflow effect describes the unsteady aerodynamic response to fast changes in rotor loading due to the inertia of the wake. Fast changes in turbine loading due to pitch actuation or rotor speed transients lead to load overshoots. The phenomenon is suspected to be also relevant for gust situations; however, this was never shown, and thus the actual load response is also unknown. The paper’s objectives are to prove and explain the dynamic inflow effect due to gusts, and compare and subsequently improve a typical dynamic inflow engineering model to the measurements. An active grid is used to impress a 1.8m diameter model turbine with rotor uniform gusts of the wind tunnel flow. The influence attributed to the dynamic inflow effect is isolated from the comparison of two experimental cases. Firstly, dynamic measurements of loads and radially resolved axial velocities in the rotor plane during a gust situation are performed. Secondly, corresponding quantities are linearly interpolated for the gust wind speed from lookup tables with steady operational points. Furthermore,simulations with a typical blade element momentum code and a higher-fidelity free-vortex wake model are performed. Both the experiment and higher-fidelity model show a dynamic inflow effect due to gusts in the loads and axial velocities. An amplification of induced velocities causes reduced load amplitudes. Consequently, fatigue loading would be lower. This amplification originates from wake inertia. It is influenced by the coherent gust pushed through the rotor like a turbulent box. The wake is superimposed on that coherent gust box, and thus the inertia of the wake and consequently also the flow in the rotor plane is affected. Contemporary dynamic inflow models inherently assume a constant wind velocity. They filter the induced velocity and thus cannot predict the observed amplification of the induced velocity. The commonly used Øye engineering model predicts increased gust load amplitudes and thus higher fatigue loads. With an extra filter term on the quasi-steady wind velocity, the qualitative behaviour observed experimentally and numerically can be caught. In conclusion, these new experimental findings on dynamic inflow due to gusts and improvements to the Øye model enable improvements in wind turbine design by less conservative fatigue loads.
LINK
Full text beschikbaar met HU-account. Since the 2010s, various companies have begun to manufacture wearable smartwatch devices, but the current sales of these products are not impressive. This study investigates how the limitations of the smartwatch are related to perceptual discomforts. Theoretically, this study evaluates the claim that the discomfort that users appear to have with the smartwatch stem from failed remediation. Users perceive the smartwatch more as a set of functional sensors rather than a watch or smartphone. Specifically, from the remediation perspective, the authors asked how users perceive the functions of the smartwatch. This study used dynamic topic modeling for topics on the smartwatch on Reddit. This study reports that the smartwatch has failed to provide a proper way to use the remediated content that it provides. Suggestions for future studies are addressed.
LINK
The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.
LINK