Dynamic body feedback is used in dance movement therapy (DMT), with the aim to facilitate emotional expression and a change of emotional state through movement and dance for individuals with psychosocial or psychiatric complaints. It has been demonstrated that moving in a specific way can evoke and regulate related emotions. The current study aimed to investigate the effects of executing a unique set of kinetic movement elements on an individual mover’s experience of happiness. A specific sequence consisting of movement elements that recent studies have related to the feeling of happiness was created and used in a series of conditions. To achieve a more realistic reflection of DMT practice, the study incorporated the interpersonal dimension between the dance movement therapist (DMTh) and the client, and the impact of this interbodily feedback on the emotional state of the client. This quantitative study was conducted in a within-subject design. Five male and 20 female participants (mean age = 20.72) participated in three conditions: a solo executed movement sequence, a movement sequence executed with a DMTh who attuned and mirrored the movements, and a solo executed movement sequence not associated with feelings of happiness. Participants were only informed about the movements and not the feelings that may be provoked by these movements. The effects on individuals were measured using the Positive and Negative Affect Schedule and visual analog scales. Results showed that a specific movement sequence based on movement elements associated with happiness executed with a DMTh can significantly enhance the corresponding affective state. An additional finding of this study indicated that facilitating expressed emotion through movement elements that are not associated with happiness can enhance feelings such as empowerment, pride, and determination, which are experienced as part of positive affect. The results show the impact of specific fullbody movement elements on the emotional state and the support outcome of DMT on emotion regulation.
DOCUMENT
Background: Development of more effective interventions for nonspecific chronic low back pain (LBP), requires a robust theoretical framework regarding mechanisms underlying the persistence of LBP. Altered movement patterns, possibly driven by pain-related cognitions, are assumed to drive pain persistence, but cogent evidence is missing. Aim: To assess variability and stability of lumbar movement patterns, during repetitive seated reaching, in people with and without LBP, and to investigate whether these movement characteristics are associated with painrelated cognitions. Methods: 60 participants were recruited, matched by age and sex (30 back-healthy and 30 with LBP). Mean age was 32.1 years (SD13.4). Mean Oswestry Disability Index-score in LBP-group was 15.7 (SD12.7). Pain-related cognitions were assessed by the ‘Pain Catastrophizing Scale’ (PCS), ‘Pain Anxiety Symptoms Scale’ (PASS) and the task-specific ‘Expected Back Strain’ scale(EBS). Participants performed a seated repetitive reaching movement (45 times), at self-selected speed. Lumbar movement patterns were assessed by an optical motion capture system recording positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion-extension, lateralbending, axial-rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Differences in movement patterns, between people with and without LBP and with high and low levels of pain-related cognitions, were assessed with factorial MANOVA. Results: We found no main effect of LBP on variability and stability, but there was a significant interaction effect of group and EBS. In the LBP-group, participants with high levels of EBS, showed increased MeanSDlateral-bending (p = 0.004, η2 = 0.14), indicating a large effect. MeanSDaxial-rotation approached significance (p = 0.06). Significance: In people with LBP, spatial variability was predicted by the task-specific EBS, but not by the general measures of pain-related cognitions. These results suggest that a high level of EBS is a driver of increased spatial variability, in participants with LBP.
DOCUMENT
This dissertation describes the dynamics of motor competence (MC) development from early childhood (EC) to middle childhood (MCD). Being motor competent in early childhood creates a window of opportunity for taking part in physical activities later in childhood and adulthood. However, there is a worrying trend in MC development during childhood. This trend shows that, last decades, children struggle more with executing fundamental movement skills (e.g., hopping, dribbling, balancing, throwing and catching) and that general motor fitness levels of children are decreasing. A delay in MC development during childhood has a negative impact on the general health status later in life. Therefore, it is important to support young children to develop their MC. The main research question of this dissertation was: How can motor competence be promoted as efficient and effective as possible in early childhood by sport professionals? Chapter 2 showed that MC development from early to middle childhood proceeds with variation. The majority of the children had a stable ‘normal’ or increasing ‘high’ development of MC over time. However, a concerning level of 18.2% of the young children showed an undesirable pattern (i.e., a negative course of motor development over time and a ‘low’ MQ score during the final measurement) of MC development as they grow older. Chapters 3 and 4 showed that characteristics of the social and physical home environment and direct living environment were associated with MC disparities during early childhood. Both parenting practices and parental PA-involved behaviours were relevant modifiable factors. For example, stronger parental active transportation routines and PA parental practices decreased the odds of a lower MC. Also, the presence of a home garden decreased the likelihood of children being classified as low motor competent. With regard to gender differences, girls showed lower levels of MC compared to boys. Special attention should also be paid to obese children as they experience less enjoyment of PA compared with normal weighted peers (chapter 3). Excessive body weight is also a risk factor associated with an undesirable MC development, just like lack of sports participation (chapter 5). Intervention strategies (chapter 6) incorporating all fundamental movement skills with a great variety of activities for at least 3 to 4 times a week seem to be most effective to stimulate MC development. Methodological and didactical aspects like deliberate practice and play should be implemented together with training and coaching sessions for sport professionals to increase the effectiveness of the interventions. With respect to the efficiency of promoting MC development, policy makers and sport professionals should pay more attention on early childhood and especially focus on those children at risk for a delay in MC development. So, overweighted children and children not participating in organized sports should be given more attention by sport professionals. Additionally, the effectiveness of MC interventions can be increased by making use of the home environment, childcare context and school context of young children. Sport professionals can act as connectors between parents, school, and sports clubs.
DOCUMENT
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.