This study explores how households interact with smart systems for energy usage, providing insights into the field's trends, themes and evolution through a bibliometric analysis of 547 relevant literature from 2015 to 2025. Our findings discover: (1) Research activity has grown over the past decade, with leading journals recognizing several productive authors. Increased collaboration and interdisciplinary work are expected to expand; (2) Key research hotspots, identified through keyword co-occurrence, with two (exploration and development) stages, highlighting the interplay between technological, economic, environmental, and behavioral factors within the field; (3) Future research should place greater emphasis on understanding how emerging technologies interact with human, with a deeper understanding of users. Beyond the individual perspective, social dimensions also demand investigation. Finally, research should also aim to support policy development. To conclude, this study contributes to a broader perspective of this topic and highlights directions for future research development.
MULTIFILE
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
To improve people’s lives, human-computer interaction researchers are increasingly designing technological solutions based on behavior change theory, such as social comparison theory (SCT). However, how researchers operationalize such a theory as a design remains largely unclear. One way to clarify this methodological step is to clearly state which functional elements of a design are aimed at operationalizing a specific behavior change theory construct to evaluate if such aims were successful. In this article, we investigate how the operationalization of functional elements of theories and designs can be more easily conveyed. First, we present a scoping review of the literature to determine the state of operationalizations of SCT as behavior change designs. Second, we introduce a new tool to facilitate the operationalization process. We term the tool blueprints. A blueprint explicates essential functional elements of a behavior change theory by describing it in relation to necessary and sufficient building blocks incorporated in a design. We describe the process of developing a blueprint for SCT. Last, we illustrate how the blueprint can be used during the design refinement and reflection process.
DOCUMENT
It has been suggested that physical education (PE) and active transport can make a meaningful contribution to children's physical activity (PA) levels. However, data on the contribution these activities to total PA is scarce, and PE's contribution to total physical activity energy expenditure (PAEE) has to our knowledge never been determined. This is probably explained by the methodological complexity of determining PAEE (Welk, 2002). In this paper, we present the first data of an ongoing study using combined heart rate monitoring and accelerometry, together with activity diaries. Over the six measurement days, PE contributed 5% to total PAEE, and 16% to school-related PAEE, whereas active transportation had a much larger contribution.
DOCUMENT
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
DOCUMENT
Background and purpose The aim of this study is to investigate changes in movement behaviors, sedentary behavior and physical activity, and to identify potential movement behavior trajectory subgroups within the first two months after discharge from the hospital to the home setting in first-time stroke patients. Methods A total of 140 participants were included. Within three weeks after discharge, participants received an accelerometer, which they wore continuously for five weeks to objectively measure movement behavior outcomes. The movement behavior outcomes of interest were the mean time spent in sedentary behavior (SB), light physical activity (LPA) and moderate to vigorous physical activity (MVPA); the mean time spent in MVPA bouts ≥ 10 minutes; and the weighted median sedentary bout. Generalized estimation equation analyses were performed to investigate overall changes in movement behavior outcomes. Latent class growth analyses were performed to identify patient subgroups of movement behavior outcome trajectories. Results In the first week, the participants spent an average, of 9.22 hours (67.03%) per day in SB, 3.87 hours (27.95%) per day in LPA and 0.70 hours (5.02%) per day in MVPA. Within the entire sample, a small but significant decrease in SB and increase in LPA were found in the first weeks in the home setting. For each movement behavior outcome variable, two or three distinctive subgroup trajectories were found. Although subgroup trajectories for each movement behavior outcome were identified, no relevant changes over time were found. Conclusion Overall, the majority of stroke survivors are highly sedentary and a substantial part is inactive in the period immediately after discharge from hospital care. Movement behavior outcomes remain fairly stable during this period, although distinctive subgroup trajectories were found for each movement behavior outcome. Future research should investigate whether movement behavior outcomes cluster in patterns.
MULTIFILE
Behaviour Change Support Systems (BCSS), already running for the 10th time at Persuasive Technology, is a workshop that builds around the concept of systems that are specifically designed to help and support behaviour change in individuals or groups. The highly multi-disciplinary nature of designing and implementing behaviour change strategies and systems for the strategies has been in the forefront of this workshop from the very beginning. The persuasive technology field is becoming a linking pin connecting natural and social sciences, requiring a holistic view on persuasive technologies, as well as multi-disciplinary approach for design, implementation, and evaluation. So far, the capacities of technologies to change behaviours and to continuously monitor the progress and effects of interventions are not being used to its full potential. The use of technologies as persuaders may shed a new light on the interaction process of persuasion, influencing attitudes and behaviours. Yet, although human- computer interaction is social in nature and people often do see computers as social actors, it is still unknown how these interactions re-shape attitude, beliefs, and emotions, or how they change behaviour, and what the drawbacks are for persuasion via technologies. Humans re-shape technology, changing their goals during usage. This means that persuasion is not a static ad hoc event but an ongoing process. Technology has the capacity to create smart (virtual) persuasive environments that provide simultaneously multimodal cues and psycho-physiological feedback for personal change by strengthening emotional, social, and physical presence. An array of persuasive applications has been developed over the past decade with an aim to induce desirable behaviour change. Persuasive applications have shown promising results in motivating and supporting people to change or adopt new behaviours and attitudes in various domains such as health and wellbeing, sustainable energy, education, and marketing. This workshop aims at connecting multidisciplinary researchers, practitioners and experts from a variety of scientific domains, such as information sciences, human-computer interaction, industrial design, psychology and medicine. This interactive workshop will act as a forum where experts from multiple disciplines can present their work, and can discuss and debate the pillars for persuasive technology.
MULTIFILE
Movement behaviors, that is, both physical activity and sedentary behavior, are independently associated with health risks. Although both behaviors have been investigated separately in people after stroke, little is known about the combined movement behavior patterns, differences in these patterns between individuals, or the factors associated with these patterns. Therefore, the objectives of this study are (1) to identify movement behavior patterns in people with first-ever stroke discharged to the home setting and (2) to explore factors associated with the identified patterns.
DOCUMENT
Abstract: Combined lifestyle interventions (CLI) are focused on guiding clients with weight-related health risks into a healthy lifestyle. CLIs are most often delivered through face-to-face sessions with limited use of eHealth technologies. To integrate eHealth into existing CLIs, it is important to identify how behavior change techniques are being used by health professionals in the online and offline treatment of overweight clients. Therefore, we conducted online semi-structured interviews with providers of online and offline lifestyle interventions. Data were analyzed using an inductive thematic approach. Thirty-eight professionals with (n = 23) and without (n = 15) eHealth experience were interviewed. Professionals indicate that goal setting and action planning, providing feedback and monitoring, facilitating social support, and shaping knowledge are of high value to improve physical activity and eating behaviors. These findings suggest that it may be beneficial to use monitoring devices combined with video consultations to provide just-in-time feedback based on the client’s actual performance. In addition, it can be useful to incorporate specific social support functions allowing CLI clients to interact with each other. Lastly, our results indicate that online modules can be used to enhance knowledge about health consequences of unhealthy behavior in clients with weight-related health risks.
DOCUMENT