Fouling plays a major role in the Dairy industry. Five criteria: defined flow, no circulation, real factory product, defined product temperature and defined wall temperature, are used to review articles on this topic published between 2003 and 2020. To show the effect of those criteria in experiments, a simulation model is developed. For a good experimental design to measure fouling, the use of a dairy product in a tubular heater with a known developed flow is advised. The temperature-time history of the product and the wall temperature of the heater should be recorded. Circulation of a product will increase the fouling and decrease the flow. Although none of the reviewed articles complied to all criteria, 71% of the reviewed articles met at least two criteria. If not all criteria are met, the results are of less use for the application for process lines on industrial scale. A simulated computer model can be helpful.
MULTIFILE
Introduction: Illness Perceptions (IPs) may play a role in the management of persistent low back pain. The mediation and/or moderation effect of IPs on primary outcomes in physiotherapy treatment is unknown. Methods: A multiple single-case experimental design, using a matched care physiotherapy intervention, with three phases (phases A-B-A’) was used including a 3 month follow up (phase A’). Primary outcomes: pain intensity, physical functioning and pain interference in daily life. Analyzes: linear mixed models, adjusted for fear of movement, catastrophizing, avoidance, sombreness and sleep. Results: Nine patients were included by six different primary care physiotherapists. Repeated measures on 196 data points showed that IPs Consequences, Personal control, Identity, Concern and Emotional response had a mediation effect on all three primary outcomes. The IP Personal control acted as a moderator for all primary outcomes, with clinically relevant improvements at 3 month follow up. Conclusion: Our study might indicate that some IPs have a mediating or a moderating effect on the outcome of a matched care physiotherapy treatment. Assessing Personal control at baseline, as a relevant moderator for the outcome prognosis of successful physiotherapy management of persistent low back pain, should be further eplored.
This investigation explores relations between 1) a theory of human cognition, called Embodied Cognition, 2) the design of interactive systems and 3) the practice of ‘creative group meetings’ (of which the so-called ‘brainstorm’ is perhaps the best-known example). The investigation is one of Research-through-Design (Overbeeke et al., 2006). This means that, together with students and external stakeholders, I designed two interactive prototypes. Both systems contain a ‘mix’ of both physical and digital forms. Both are designed to be tools in creative meeting sessions, or brainstorms. The tools are meant to form a natural, element in the physical meeting space. The function of these devices is to support the formation of shared insight: that is, the tools should support the process by which participants together, during the activity, get a better grip on the design challenge that they are faced with. Over a series of iterations I reflected on the design process and outcome, and investigated how users interacted with the prototypes.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.